• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 22
  • 12
  • 7
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 24
  • 16
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Posúdenie efektov implementácie fyzického cash poolingu v nadnárodnej spoločnosti

Madliaková, Stanislava January 2019 (has links)
The thesis describes the effects of physical cash pooling implementation in a multinational company. The aim is to establish a general methodological framework for evaluating the costs and benefits of physical cash concentration. The basis is a theoretical overview of the cash concentration, which includes the definition of the main concepts and the methodical procedure for the implementation of this liquidity management tool in the company. In the empirical part there is a concrete application of the methodical procedure, internal and external environment analysis, as well as discussion of the effects of cash pooling implementation. The final chapter sets out a general assessment framework for the costs and benefits of physical cash pooling.
22

Collective Dynamics of Ride Sharing Systems with Pooled Stops: Sustainability and Reliability

Lotze, Charlotte 26 June 2023 (has links)
Private cars are responsible for 15% of carbon emissions in the European Union. Ride hailing services like taxis could serve the door-to-door mobility demand of private car users with fewer overall vehicles. If the service combines multiple user trips, it might even reduce the distance driven compared to private cars which becomes ecologically sustainable. Such ride sharing services are particularly sustainable when many users share one vehicle. But connecting the trips of all users yields many small detours. These detours reduce if some users walk a short distance to a neighboring stop. When multiple stops are combined, vehicles drive to fewer stops. Such stop pooling promises to make ride sharing even more sustainable. Some ride sharing services already integrate short user walks into their system. But the effects of stop pooling on ride sharing systems are yet to be understood. Methods from theoretical physics like mean-field theory and agent-based modeling enable a systemic analysis of complex ride sharing systems. This thesis demonstrates that ride sharing may be more sustainable when users accept short walks. With stop pooling, users wait shorter for vehicles and drive shorter because of more direct vehicle routes. In consequence, the user travel time decreases on average despite additional walk time at constant fleet size. Put differently, stop pooling allows to reduce the fleet size at constant travel time. This also reduces the distance driven by all vehicles that is proportional to the fleet size when sufficient users share one vehicle. This result is robust in a data-driven model using taxi trip data from Manhattan (New York City, USA) with fluctuating demand over the day. At constant fleet size the travel time fluctuates with the demand and might deviate a lot from the expected average travel time. Such unreliable travel times might deter users from ride sharing. However, stop pooling reduces the travel time, the more the higher the travel time without walking. Consequently, stop pooling also reduces the fluctuations in the travel time. This effect is particularly large when adapting the maximum allowed walk distance to the current demand. In adaptive stop pooling users walk further at higher demand. Then, the travel time in ride sharing is more reliable when users accept short walks. All in all, this thesis contributes to the fundamental understanding of the collective dynamics of ride sharing and the effect of stop pooling at a systemic level while also explaining underlying mechanisms. The results suggest that ride sharing providers and users benefit from integrating adaptive stop pooling into the service. Based on the results, a framework can be established that roughly adjusts fleet size to demand to ensure that the ride sharing service operates sustainably. Even if this fleet size remains constant throughout the day, adaptive stop pooling keeps the travel time reliable.:1. Introduction 1 1.1. Private Cars are Unsustainable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Potentially More Sustainable Ride Sharing Faces Detours . . . . . . . . . . . . . 2 1.3. Less Detours in Ride Sharing with Walking to Pooled Stops . . . . . . . . . . . . 4 1.4. Physics Methods Help Understanding Ride Sharing . . . . . . . . . . . . . . . . . 5 1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Fundamentals - A Physics Perspective on Ride Sharing 7 2.1. State of Research on Ride Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Ride Sharing Systems are Complex . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2. Measuring Efficiency and Sustainability of Ride Sharing Services . . . . . 8 2.1.3. Ride Sharing might be More Sustainable when Users Accept Short Walks 10 2.1.4. Data-Driven Analysis Yields more Detailed Results . . . . . . . . . . . . . 11 2.1.5. Open Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. Theoretical Physics Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1. What is a Complex System? . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2. Mean-Field Theory Simplifies Complex Systems . . . . . . . . . . . . . . 13 2.2.3. Model Complex Systems Based on Agents, not on Equations . . . . . . . 14 2.2.4. Methods from Statistical Physics to Evaluate Multi-Agent Simulations . . 14 2.2.5. Model Street Networks Using Graph Theory . . . . . . . . . . . . . . . . 20 3. Model for Ride Sharing with Walking to Pooled Stops 25 3.1. Ride Sharing Combines Trips with Similar Directions . . . . . . . . . . . . . . . . 25 3.2. Stop Pooling with Dynamic Stop Locations Maintains Flexibility . . . . . . . . . 26 3.3. Simple Algorithm Assigns Users by Reducing Bus Detour . . . . . . . . . . . . . 28 3.3.1. Standard Ride Sharing Algorithm . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2. Stop Pooling Algorithm at Similar Speed . . . . . . . . . . . . . . . . . . 29 3.4. Basic Setting in Continuous Space . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1. Uniform Request Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.2. Heterogeneous Request Distribution . . . . . . . . . . . . . . . . . . . . . 32 3.5. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.1. Relative Distance Driven Measures Ecological Sustainability . . . . . . . . 33 3.5.2. Measure Service Quality by Average User Travel Time . . . . . . . . . . . 34 3.5.3. Further Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.4. Bisection Method to Find Minimal Travel Time with Small Effort . . . . 36 3.6. Model Extensions Yield More Detailed Results . . . . . . . . . . . . . . . . . . . 37 3.6.1. Fine-Grained Street Network Enables Short Walk Distances . . . . . . . . 38 iii Contents 3.6.2. Data-Driven Demand is Heterogeneous . . . . . . . . . . . . . . . . . . . . 39 3.6.3. Explicit Stop Times Ensure Penalty For Each Stop . . . . . . . . . . . . . 41 3.6.4. Imbalanced Demand Requires Rebalancing of Buses . . . . . . . . . . . . 42 3.6.5. More Detailed Assignment Algorithm Uses Constraints . . . . . . . . . . 43 4. Quantifying Sustainability of Ride Sharing 45 4.1. Two Mechanisms Influence Ride Sharing Sustainability . . . . . . . . . . . . . . . 46 4.1.1. Pickup Detours Increase Distance Driven . . . . . . . . . . . . . . . . . . 46 4.1.2. Trip Overlap Reduces Distance Driven . . . . . . . . . . . . . . . . . . . . 47 4.2. Distance Driven Reduces with Bus Occupancy . . . . . . . . . . . . . . . . . . . 48 4.3. Ride Sharing is more Sustainable than Private Cars for Sufficient Load . . . . . . 50 4.4. Result is Robust for more Complex Models . . . . . . . . . . . . . . . . . . . . . 52 4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5. Ride Sharing Sustainability with Stop Pooling 55 5.1. Ride Sharing Trades Sustainability for Travel Time . . . . . . . . . . . . . . . . . 57 5.2. Stop Pooling is more Sustainable at Same Travel Time . . . . . . . . . . . . . . . 58 5.2.1. Roughly Constant Distance Driven Despite Saved Stops . . . . . . . . . . 58 5.2.2. Stop Pooling Reduces Travel Time . . . . . . . . . . . . . . . . . . . . . . 59 5.2.3. Stop Pooling Breaks The Trade-off Between Sustainability And Travel Time 60 5.3. Higher Stop Pooling Effect for High Loads . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1. Stop Pooling Limits Growth of Best Travel Time . . . . . . . . . . . . . . 62 5.3.2. Stop Pooling Breaks Trade-off for Sufficient Load . . . . . . . . . . . . . . 63 5.4. Robust Effect for Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5. Robust Effect with More Detailed Model . . . . . . . . . . . . . . . . . . . . . . . 66 5.5.1. Load Quantifies Stop Pooling Sustainability . . . . . . . . . . . . . . . . . 67 5.5.2. Already 1.2 Minutes Walk Time might Save 1 Minute Travel Time . . . . 68 5.5.3. Robust Result for Different Parameters . . . . . . . . . . . . . . . . . . . 69 5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6. Ride Sharing Reliability with Stop Pooling 71 6.1. Unreliable Standard Ride Sharing with Fluctuating Demand . . . . . . . . . . . . 72 6.2. More Reliable Stop Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3. Robust Effect of Stop Pooling with Limited User Delay . . . . . . . . . . . . . . 77 6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7. Discussion 81 7.1. Results and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.1. When is Ride Sharing More Sustainable than Private Cars? . . . . . . . . 81 7.1.2. How Does Stop Pooling Influence Sustainability of Ride Sharing? . . . . . 82 7.1.3. How Does Stop Pooling Influence Reliability of Ride Sharing? . . . . . . . 82 7.2. Limitations of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.2.1. Simple Algorithms for Ride Sharing and Stop Pooling . . . . . . . . . . . 82 7.2.2. Integrate Adaptive Stop Pooling into Virtual Bus Stops . . . . . . . . . . 83 7.2.3. Distance Driven as Estimator for Ecological Sustainability . . . . . . . . . 83 7.2.4. Deviations from Load Prediction . . . . . . . . . . . . . . . . . . . . . . . 84 7.2.5. Mean-Field Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2.6. Further Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A. Appendix 87 A.1. Manhattan Street Network Resembles Grid . . . . . . . . . . . . . . . . . . . . . 87 A.2. Computation Details of Bisection Method . . . . . . . . . . . . . . . . . . . . . . 88 A.3. Average Pickup Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.4. Robustness of Ride Sharing Sustainability . . . . . . . . . . . . . . . . . . . . . . 90 A.5. Stop Pooling Saves Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 A.6. Stop Pooling Effectively Reduces Load . . . . . . . . . . . . . . . . . . . . . . . . 92 A.7. Example Breaking of Trade-off in Simple Model . . . . . . . . . . . . . . . . . . . 93 A.8. Transition in Best Walk Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.9. Maximal Trade-off Shift Increases with Load . . . . . . . . . . . . . . . . . . . . 95 A.10.Rebalancing Buses is more Important with Constraint . . . . . . . . . . . . . . . 97 A.11.Breaking of Trade-off in Complex Model . . . . . . . . . . . . . . . . . . . . . . . 98 A.12.More Stop Pooling at Destinations and High Demand . . . . . . . . . . . . . . . 99 A.13.Roughly Constant Wait and Drive Time in Adaptive Stop Pooling . . . . . . . . 100 A.14.Influence of Capacity Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 A.15.Walk Time of Rejected Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography 101 Acknowledgment 116 Statement of Contributions 118
23

Konsolidovaná účetní závěrka / Consolidated Financial Statements

Vaníčková, Michaela January 2018 (has links)
This master thesis deals with issues that are focused on the consolidated financial statemenst and the financial situation of the group of companies. The primary goal of the thesis is evaluate the financial situacion of selected group of companies on the basic of financial analysis. From analysis are suggests proposals improvements to the financial situation of the group including individual companies, that have some weaknesses which follow from analysis. The financial analysis is realize over the period 2013 – 2016.
24

A global optimization approach to pooling problems in refineries

Pham, Viet 15 May 2009 (has links)
The pooling problem is an important optimization problem that is encountered in operation and scheduling of important industrial processes within petroleum refineries. The key objective of pooling is to mix various intermediate products to achieve desired properties and quantities of products. First, intermediate streams from various processing units are mixed and stored in intermediate tanks referred to as pools. The stored streams in pools are subsequently allowed to mix to meet varying market demands. While these pools enhance the operational flexibility of the process, they complicate the decisionmaking process needed for optimization. The problem to find the least costly mixing recipe from intermediate streams to pools and then from pools to sale products is referred to as the pooling problem. The research objective is to contribute an approach to solve this problem. The pooling problem can be formulated as an optimization program whose objective is to minimize cost or maximize profit while determining the optimal allocation of intermediate streams to pools and the blending of pools to final products. Because of the presence of bilinear terms, the resulting formulation is nonconvex which makes it very difficult to attain the global solution. Consequently, there is a need to develop computationally-efficient and easy-to-implement global-optimization techniques to solve the pooling problem. In this work, a new approach is introduced for the global optimization of pooling problems. The approach is based on three concepts: linearization by discretizing nonlinear variables, pre-processing using implicit enumeration of the discretization to form a convex-hull which limits the size of the search space, and application of integer cuts to ensure compatibility between the original problem and the discretized formulation. The continuous quality variables contributing to bilinear terms are first discretized. The discretized problem is a mixed integer linear program (MILP) and can be globally solved in a computationally effective manner using branch and bound method. The merits of the proposed approach are illustrated by solving test case studies from literature and comparison with published results.
25

Multipath Probabilistic Early Response TCP

Singh, Ankit 2012 August 1900 (has links)
Many computers and devices such as smart phones, laptops and tablet devices are now equipped with multiple network interfaces, enabling them to use multiple paths to access content over the network. If the resources could be used concurrently, end user experience can be greatly improved. The recent studies in MPTCP suggest that improved reliability, load balancing and mobility are feasible. The thesis presents a new multipath delay based algorithm, MPPERT (Multipath Probabilistic Early response TCP), which provides high throughput and efficient load balancing. In all-PERT environment, MPPERT suffers no packet loss and maintains much smaller queue sizes compared to existing MPTCP, making it suitable for real time data transfer. MP-PERT is suitable for incremental deployment in a heterogeneous environment. It also presents a parametrized approach to tune the amount of traffic shift off the congested path. Multipath approach is benefited from having multiple connections between end hosts. However, it is desired to keep the connection set minimal as increasing number of paths may not always provide significant increase in the performance. Moreover, higher number of paths unnecessarily increase computational requirement. Ideally, we should suppress paths with low throughputs and avoid paths with shared bottlenecks. In case of MPTCP, there is no efficient way to detect a common bottleneck between subflows. MPTCP applies a constraint of best single-path TCP throughput, to ensure fair share at a common bottleneck link. The best path throughput constraint along with traffic shift, from more congested to less congested paths, provide better opportunity for the competing flows to achieve higher throughput. However, the disadvantage is that even if there are no shared links, the same constraint would decrease the overall achievable throughput of a multipath flow. PERT, being a delay based TCP protocol, has continuous information about the state of the queue. This information is valuable in enabling MPPERT to detect subflows sharing a common bottleneck and obtain a smaller set of disjoint subflows. This information can even be used to switch from coupled (a set of subflows having interdependent increase/decrease of congestion windows) to uncoupled (independent increase/decrease of congestion windows) subflows, yielding higher throughput when best single-path TCP constraint is relaxed. The ns-2 simulations support MPPERT as a highly competitive multipath approach, suitable for real time data transfer, which is capable of offering higher throughput and improved reliability.
26

Die Erfassung verdeckter Vermögensverlagerungen im Rahmen eines bilanzgestützten Kapitalschutzes bei der GmbH de lege lata et ferenda : eine Untersuchung unter besonderer Berücksichtigung des Cash Poolings im faktischen GmbH-Konzern sowie des Regierungsentwurfs eines Gesetzes zur Modernisierung des GmbH-Rechts und zur Bekämpfung von Missbräuchen (MoMiG) /

Eusani, Guido. January 2008 (has links)
Zugl.: Köln, Universiẗat, Diss., 2008.
27

La mutualisation des compétences et des moyens entre personnes de droit public / Pooling of skills and resources between legal entities governed by public law

Charmasson, Christophe 14 January 2012 (has links)
La mutualisation est un phénomène né des pratiques des collectivités locales, qui s'est propagé à l'ensemble des autres personnes morales de droit public comme l'Etat et les établissements publics administratifs. Ces pratiques donnent lieu à l'application de différents dispositifs encadrés par des normes, par lesquels ces acteurs vont le plus souvent, soit créer une nouvelle institution dotée ou non de la personnalité morale, soit procéder à des regroupements de services, par le biais de contrats. Cette variété des dispositifs permet à la fois la coopération entre toutes ces entités unies par une communauté de destins, mais également de dégager des économies en agissant à plusieurs, pour une même action. Ainsi, les personnes publiques oeuvrent pour une amélioration du fonctionnement de leurs services. Toutefois, certains dispositifs de mutualisation en complexifient l'organisation. En effet, la nature juridique protéiforme de ces dispositifs soulève parfois des problèmes d'application sur le terrain. De plus, les changements qu'ils induisent dans l'organisation d'un service, peuvent se heurter aux volontés des individus qui vont les mettre en place, voire les subir, à savoir les agents de l'administration et les citoyens. Le rôle des autorités publiques telles les ministres, préfets et élus locaux est primordial dans la conduite du changement, mais celui des chefs de services est d'autant plus important, étant donné qu'ils font office d'interface entre les autorités publiques, les agents de l'administration et les citoyens. / Pooling is a phenomenon coming from practices of local authorities that has spread over all the other legal entities governed by public law, such as the State and administrative public establishments. These practices had led to the implementation of various plans framed by standards, by which these authorities are going the most often either to create a new institution endowed with legal personality, or to perform departmental grouping through agreements. This variety of plans encourages local relationships between all these pooled entities that are not only linked by a common objective, but also it allows making cost savings by acting together, for a common action. Thus, public authorities work for an improvement of the functioning of their services. However, some pooling plans make their organization more complex. Indeed, the protean legal nature of these plans raises implementation issues in the field. Furthermore, the changes they lead in a service organization can run up against the desire of individuals, that is to say, administrative officers and citizens, who will put them in place, or even endure them. The role of public authorities such as ministers, prefects and local elected representatives is essential in change management, but the role of the managers is all the more crucial since they act as interface between public authorities, administrative officers and citizens.
28

The "Common Pot": Income Pooling in American Couples and Families

Eickmeyer, Kasey J. 06 August 2019 (has links)
No description available.
29

Just in Time och Samlastning : Logistiska strategier för ökad effektivitet, minskade kostnader och förbättrad responsivitet / Just-in-Time and Consolidation : Logistical strategies for increased efficiency, reduced costs, and enhanced responsiveness

Abed, Hanna, Obradovac, Edim January 2023 (has links)
Abstract The purpose of this study is to deepen the knowledge and understanding of the strategies “just in time” and “freight pooling” in logistics management in the food industry. In order to answer the purpose, we had two different research questions. The questions are about what advantages and disadvantages there are with these strategies in the food industry. The study is conducted in a qualitative way where the interviews and observations are used to deepen the knowledge of how an organization in food industries uses the strategies “just in time” and “freight pooling”. The previous science shows that there are some advantages with these strategies but also disantvages that the organization should have in mind and work with so that they do not happen. The study shows that the organization this study was conducted on where very successful in implementing these strategies and they experienced many advantages by using “just in time” and “freight pooling”. The organization this study was conducted on were really cautious with the possible setbacks that the strategies can so they emphasized that they need to work really close with all the involved parties so that they can minimize the risk for the disadvantages to happen.  Keywords: just in time, pooling, logistic strategies, transport optimization, food supply chain
30

iTREE: Intelligent Traffic and Resource Elastic Energy scheme for Cloud-RAN

Sigwele, Tshiamo, Pillai, Prashant, Hu, Yim Fun 26 October 2015 (has links)
Yes / By 2020, next generation (5G) cellular networks are expected to support a 1000 fold traffic increase. To meet such traffic demands, Base Station (BS) densification through small cells are deployed. However, BSs are costly and consume over half of the cellular network energy. Meanwhile, Cloud Radio Access Networks (C-RAN) has been proposed as an energy efficient architecture that leverage cloud computing technology where baseband processing is performed in the cloud. With such an arrangement, more energy gains can be acquired through statistical multiplexing by reducing the number of BBUs used. This paper proposes a green Intelligent Traffic and Resource Elastic Energy (iTREE) scheme for C-RAN. In iTREE, BBUs are reduced by matching the right amount of baseband processing with traffic load. This is a bin packing problem where items (BS aggregate traffic) are to be packed into bins (BBUs) such that the number of bins used are minimized. Idle BBUs can then be switched off to save energy. Simulation results show that iTREE can reduce BBUs by up to 97% during off peak and 66% at peak times with RAN power reductions of up to 27% and 18% respectively compared with conventional deployments.

Page generated in 0.1649 seconds