21 |
Analysis and Optimum Design of stiffened shear webs in airframesViljoen, Awie 13 January 2005 (has links)
The analysis and optimum design of stiffened, shear webs in aircraft structures is addressed. The post-buckling behaviour of the webs is assessed using the interactive algorithm developed by Grisham. This method requires only linear finite element analyses, while convergence is typically achieved in as few as five iterations. The Grisham algorithm is extensively compared with empirical analysis methods previously used for aircraft structures and also with a refined, non-linear quasi-static finite element analysis. The Grisham algorithm provides for both compressive buckling in two directions as well as shear buckling, and overcomes some of the conservatism inherent in conventional methods of analysis. In addition, the method is notably less expensive than a complete non-linear finite element analysis, even though global collapse cannot be predicted. While verification of the analysis methodology is the main focus of the stud, an initial investigation into optimization is also made. In optimizing stiffened thin walled structures, the Grisham algorithm is combined with a genetic algorithm. Allowable stress constraints are accommodated using a simple penalty formulation. / Dissertation (MEng (Mechanical and Aeronautical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
|
22 |
Étude numérique des modes d'instabilités des systèmes film-substrat / Numerical study of instability patterns of film-substrate systemsXu, Fan 02 December 2014 (has links)
Le plissement dans les films minces sur un substrat plus mou a été largement observé dans la nature. Ces phénomènes ont suscité un intérêt considérable au cours de la dernière décennie. L’évolution en post-flambage d’instabilités morphologiques implique souvent de forts effets de non-linéarité géométrique, de grandes rotations, de grands déplacements, de grandes déformations, une dépendance par rapport au chemin de chargement et de multiples brisures de symétrie. En raison de ces difficultés notoires, la plupart des analyses non-linéaires de flambement ont recouru à des approches numériques parce qu’on ne peut obtenir qu’un nombre limité de solutions exactes de manière analytique. Cette thèse propose un cadre général pour étudier le problème de flambage de systèmes film/substrat de manière numérique : de la modélisation 2D ou 3D, d’un point de vue classique ou multiéchelle. L’objectif principal est d’appliquer des méthodes numériques avancées pour des analyses de bifurcations multiples aux divers modèles de film/substrat, en particulier en se concentrant sur l’évolution en post-flambement et la transition du mode à la surface. Les modèles intègrent la Méthode Asymptotique Numérique (MAN) comme une technique robuste de pilotage et des indicateurs de bifurcation qui sont bien adaptés à la MAN pour détecter une séquence de bifurcations multiples ainsi que les modes d’instabilité associés sur leur chemin d’évolution de post-flambement. La MAN donne un accès interactif aux branches d’équilibre semi-analytique, qui offre un avantage considérable en termes de la fiabilité par rapport aux algorithmes itératifs classiques. En outre, une stratégie originale de couplage non-local est développée pour coupler les modèles classiques et les modèles multi-échelles concurremment, où les forces de chaque modèle sont pleinement exploitées, et leurs lacunes surmontées. Une discussion sur la transition entre les différentes échelles est fournie d’une manière générale, qui peut également être considéré comme un guide pour les techniques de couplage impliquant d’autres modèles réduits. A la fin, un cadre général de modélisation macroscopique est développé et deux modèles spécifiques de type Fourier sont dérivés de modèles classiques bien établis, qui permettent de prédire la formation des modes d’instabilités avec beaucoup moins d’éléments et donc de réduire le coût de calcul de manière significative / Surface wrinkles of stiff thin layers attached on soft materials have been widely observed in nature and these phenomena have raised considerable interests over the last decade. The post-buckling evolution of surface morphological instability often involves strong effects of geometrical nonlinearity, large rotation, large displacement, large deformation, loading path dependence and multiple symmetry-breakings. Due to its notorious difficulty, most nonlinear buckling analyses have resorted to numerical approaches since only a limited number of exact analytical solutions can be obtained. This thesis proposes a whole framework to study the film/substrate buckling problem in a numerical way: from 2D to 3D modeling, from classical to multi-scale perspective. The main aim is to apply advanced numerical methods for multiple-bifurcation analyses to various film/substrate models, especially focusing on post-buckling evolution and surface mode transition. The models incorporate Asymptotic Numerical Method (ANM) as a robust path-following technique and bifurcation indicators well adapted to the ANM to detect a sequence of multiple bifurcations and the associated instability modes on their post-buckling evolution path. The ANM gives interactive access to semi-analytical equilibrium branches, which offers considerable advantage of reliability compared with classical iterative algorithms. Besides, an original nonlocal coupling strategy is developed to bridge classical models and multi-scale models concurrently, where the strengths of each model are fully exploited while their shortcomings are accordingly overcome. Discussion on the transition between different scales is provided in a general way, which can also be seen as a guide for coupling techniques involving other reduced-order models. Lastly, a general macroscopic modeling framework is developed and two specific Fourier-related models are derived from the well-established classical models, which can predict the pattern formation with much fewer elements so as to significantly reduce the computational cost
|
23 |
[en] EDUCATIONAL TOOL FOR STRUCTURAL ANALYSIS OF PLANE FRAME MODELS WITH GEOMETRIC NONLINEARITY / [pt] FERRAMENTA EDUCACIONAL PARA ANÁLISE ESTRUTURAL DE MODELOS DE PÓRTICOS PLANOSRAFAEL LOPEZ RANGEL 06 May 2020 (has links)
[pt] A análise não linear de estruturas é uma tarefa de grande importância na execução de projetos eficientes e seguros, permitindo a economia de recursos materiais, ao tempo que se identifica efeitos de segunda ordem no comportamento do modelo que podem vir a ter consequências significativas. Esse tipo de análise é realizado através de algoritmos numéricos iterativos, e a visualização de resultados gráficos é essencial para auxiliar a interpretação do analista. Por isso, a análise não linear só se tornou recorrente com o advento de aplicações computacionais gráfico-iterativas. Porém, diferentemente de uma análise linear-elástica, em que os resultados fornecidos pelo programa pouco dependem do conhecimento do usuário sobre os métodos de solução, a análise não linear requer uma série de parâmetros de entrada relacionados aos métodos numéricos e, portanto, exige um conhecimento básico por parte do usuário sobre os algoritmos de solução e comportamento do modelo. Tendo isso em vista, este trabalho busca desenvolver uma ferramenta computacional de fácil uso e com uma interface gráfica simples, porém com um solver robusto, para auxiliar a aprendizagem da análise geometricamente não linear de modelos aporticados bidimensionais. Para isso o programa de análise estrutural Ftool, consagrado na comunidade de Engenharia Civil e no meio acadêmico, foi adotado para receber os novos recursos para executar a análise com não linearidade geométrica. Na nova versão do Ftool, os usuários têm a oportunidade de utilizar e testar diversas técnicas de solução do sistema não linear de equilíbrio do modelo, descritas nesse trabalho. A forma como a análise é executada permite um controle total do usuário sobre o progresso da análise. Além disso, resultados em forma de gráficos podem ser estudados no novo ambiente de plotagem do programa. / [en] Nonlinear analysis of structures is an important task for efficient and safe projects, allowing the saving of material resources and the identification of second-order effects on the behavior of structural models that may have significant consequences. This type of analysis is performed with iterative numerical algorithms, and visualization of graphic results is essential to auxiliary the interpretation of the analyst. For this reason, nonlinear analyses only became common with the advent of graphical-interactive computational applications. However, unlike a linear-elastic analysis, where the results provided by the program depend very little on the users knowledge about the solution methods, a nonlinear analysis requires a series of input parameters related to the numerical methods and thus demands a basic understanding about the solution algorithms and nonlinear structural behavior. With this in mind, this work aims to develop a user-friendly computational tool with a simple graphical interface, but with a robust solver, to assist the learning of geometrically nonlinear analysis of two-dimensional frame models. The structural analysis software Ftool, largely used by the Civil Engineering community and academia, was adopted to receive the new features to perform geometrically nonlinear analyses. In the new version of the Ftool program, students, engineers and researchers have the opportunity to use and test various solution techniques of the nonlinear system of equilibrium equations, which are described in detail throughout this work. The way the nonlinear analysis is performed allows for a full control by users over the progress of the analysis. In addition, graph results can be studied in the new plotting environment of the program.
|
24 |
Fire performance of cold-formed steel sectionsCheng, Shanshan January 2015 (has links)
Thin-walled cold-formed steel (CFS) has exhibited inherent structural and architectural advantages over other constructional materials, for example, high strength-to-weight ratio, ease of fabrication, economy in transportation and the flexibility of sectional profiles, which make CFS ideal for modern residential and industrial buildings. They have been increasingly used as purlins as the intermediate members in a roof system, or load-bearing components in low- and mid-rise buildings. However, using CFS members in building structures has been facing challenges due to the lack of knowledge to the fire performance of CFS at elevated temperatures and the lack of fire design guidelines. Among all available design specifications of CFS, EN1993-1-2 is the only one which provided design guidelines for CFS at elevated temperatures, which, however, is based on the same theory and material properties of hot-rolled steel. Since the material properties of CFS are found to be considerably different from those of hot-rolled steel, the applicability of hot-rolled steel design guidelines into CFS needs to be verified. Besides, the effect of non-uniform temperature distribution on the failure of CFS members is not properly addressed in literature and has not been specified in the existing design guidelines. Therefore, a better understanding of fire performance of CFS members is of great significance to further explore the potential application of CFS. Since CFS members are always with thin thickness (normally from 0.9 to 8 mm), open cross-section, and great flexural rigidity about one axis at the expense of low flexural rigidity about a perpendicular axis, the members are usually susceptible to various buckling modes which often govern the ultimate failure of CFS members. When CFS members are exposed to a fire, not only the reduced mechanical properties will influence the buckling capacity of CFS members, but also the thermal strains which can lead additional stresses in loaded members. The buckling behaviour of the member can be analysed based on uniformly reduced material properties when the member is unprotected or uniformly protected surrounded by a fire that the temperature distribution within the member is uniform. However if the temperature distribution in a member is not uniform, which usually happens in walls and/or roof panels when CFS members are protected by plaster boards and exposed to fire on one side, the analysis of the member becomes very complicated since the mechanical properties such as Young’s modulus and yield strength and thermal strains vary within the member. This project has the aim of providing better understanding of the buckling performance of CFS channel members under non-uniform temperatures. The primary objective is to investigate the fire performance of plasterboard protected CFS members exposed to fire on one side, in the aspects of pre-buckling stress distribution, elastic buckling behaviour and nonlinear failure models. Heat transfer analyses of one-side protected CFS members have been conducted firstly to investigate the temperature distributions within the cross-section, which have been applied to the analytical study for the prediction of flexural buckling loads of CFS columns at elevated temperatures. A simplified numerical method based on the second order elastic – plastic analysis has also been proposed for the calculation of the flexural buckling load of CFS columns under non-uniform temperature distributions. The effects of temperature distributions and stress-strain relationships on the flexure buckling of CFS columns are discussed. Afterwards a modified finite strip method combined with the classical Fourier series solutions have been presented to investigate the elastic buckling behaviour of CFS members at elevated temperatures, in which the effects of temperatures on both strain and mechanical properties have been considered. The variations of the elastic buckling loads/moments, buckling modes and slenderness of CFS columns/beams with increasing temperatures have been examined. The finite element method is also used to carry out the failure analysis of one-side protected beams at elevated temperatures. The effects of geometric imperfection, stress-strain relationships and temperature distributions on the ultimate moment capacities of CFS beams under uniform and non-uniform temperature distributions are examined. At the end the direct strength method based design methods have been discussed and corresponding recommendations for the designing of CFS beams at elevated temperatures are presented. This thesis has contributed to improve the knowledge of the buckling and failure behaviour of CFS members at elevated temperatures, and the essential data provided in the numerical studies has laid the foundation for further design-oriented studies.
|
25 |
Global and Local Buckling Analysis of Stiffened and Sandwich Panels Using Mechanics of Structure GenomeNing Liu (6411908) 10 June 2019 (has links)
Mechanics of structure genome (MSG) is a unified homogenization theory that
provides constitutive modeling of three-dimensional (3D) continua, beams and plates.
In present work, the author extends the MSG to study the buckling of structures such
as stiffened and sandwich panels. Such structures are usually slender or flat and easily
buckle under compressive loads or bending moments which may result in catastrophic
failure.<div><br><div>Buckling studies of stiffened and sandwich panels are found to be scattered. Most
of the existed theories employ unnecessary assumptions or only apply to certain types
of structures. There are few unified approaches that are capable of studying the
buckling of different kinds of structures altogether. The main improvements of current
approach compared with other methods in the literature are avoiding unnecessary
assumptions, the capability of predicting all possible buckling modes including the
global and local buckling modes, and the potential in studying the buckling of various
types of structures.<br></div><div><br></div><div>For global buckling that features small local rotations, MSG mathematically decouples
the 3D geometrical nonlinear problem into a linear constitutive modeling using
structure genome (SG) and a geometrical nonlinear problem defined in a macroscopic
structure. As a result, the original structures are simplified as macroscopic structures
such as beams, plates or continua with effective properties, and the global buckling
modes are predicted on macroscopic structures. For local buckling that features
finite local rotations, Green strain is introduced into the MSG theory to achieve geometrically nonlinear constitutive modeling. Newton’s method is used to solve
the nonlinear equilibrium equations for fluctuating functions. To find the bifurcated
fluctuating functions, the fluctuating functions are then perturbed under the Bloch-periodic
boundary conditions. The bifurcation is found when the tangent stiffness
associated with the perturbed fluctuating functions becomes singular. Moreover, the
arc-length method is introduced to solve the nonlinear equilibrium equations for post-local-buckling
predictions because of its robustness. The imperfection is included in
the form of geometrical imperfection by superimposing the scaled buckling modes in
linear perturbation analysis on mesh.<br></div><div><br></div><div>Extensive validation case studies are carried out to assess the accuracy of the
MSG theory in global buckling analysis and post-global-buckling analysis, and assess
the accuracy of the extended MSG theory in local buckling and post-local-buckling
analysis. Results using MSG theory and extended MSG theory in buckling analysis
are compared with direct numerical solutions such as 3D FEA results and results in
literature. Parametric studies are performed to reveal the relative influence of selective
geometric parameters on buckling behaviors. The extended MSG theory is also
compared with representative volume element (RVE) analysis with Bloch-periodic
boundary conditions using commercial finite element packages such as Abaqus to
assess the efficiency and accuracy of the present approach.<br></div></div>
|
26 |
Flambage sous contact d’une coque cylindrique soumise à pression externe / Buckling with contact of cylindrical shell subjected to external pressureNguyen, The Nguyen 17 July 2017 (has links)
Cette étude vise à analyser la coque qui est en contact avec un matériau qui la confine, et qu’elle subite une pression latérale externe. Les conditions de contact entre les deux corps, frottant ou pas, la rigidité du confinement ainsi que les conditions de chargement, la pression qui peut être directement appliquée à la coque comme elle peut être induite par le matériau de confinement qui par retrait ou retreint ou convergence radiale induit des contraintes, ceux sont là les paramètres qui nous paraissent essentiels à jauger pour la problématique du flambage avec contact d’une coque sous pression externe. Une campagne expérimentale où plusieurs configurations de confinement sont considérées. La nature du milieu extérieur associé au confinement et donc sa rigidité, le type de confinement, discret ou locale au bien total (surface entière de la coque), sont évalués. Une instrumentation adéquate, couplant des mesures ponctuelles et de champ nous a permis de correctement mettre en exergue la phénoménologie. Les simulations numériques par éléments finis à l’aide du code de calcul Abaqus/Standard 6.12-3 intègrent les différentes non linéarité mise en musique dans ce problème, les grands déplacements et rotations du fait du flambage, la non linéarité matériau. Ces travaux montrent que même pour un confinement externe avec une très faible rigidité de membrane, comme pour le sable ou le polystyrène expansé, un gain important de capacité portante est observé, le flambage est retardé. L’augmentation est substantielle dans le cas d’un confinement total, non négligeable et consistante dans le cas d’un confinement local. Nous avons aussi constaté que la charge de flambage et le mode associé dépendent de la configuration de contact, notamment de la rigidité à la flexion du confinement. / Motivated by practical engineering applications, thin-walled cylindrical shells are widely used as structural elements. Because of their low flexural strength, these structures are very sensitive to buckling when exposed to external pressur. Conventional stiffening which makes it possible to improve the bearing capacity is to add stiffening rings connected by axial stiffeners or axial stiffeners. In these configurations the stiffening elements are an integral part of the structure with a continuity of material. One can ask the question of the effect of contiguous but non-continuous adjacent external structures ensuring total or local surface external contact. These are real configurations, such as those of buried pipelines, pipelines, or the case of insulated structures. This study aims to analyze these cases where the shell is in contact with a material which confines it, and that it undergoes an external lateral pressure. The contact conditions between the two bodies, whether rubbing or not, the stiffness of the confinement as well as the loading conditions, the pressure which can be directly applied to the shell as it may be induced by the confinement material which by withdrawal or shrinkage or Radial convergence induces stresses, these are the parameters that we consider essential for gauging the problem of buckling with contact of an external pressure shell. To answer these questions, we conducted an experimental campaign where several configurations of confinement are considered. The nature of the external environment associated with the confinement and therefore its rigidity, the type of confinement, discrete local or the total property (entire surface of the shell), are evaluated. Appropriate instrumentation, coupling point and field measurements, has allowed us to correctly highlight the phenomenology. Numerical modeling is also carried out using finite element method by Abaqus/Standard 6.12-3 code. Numerical simulations integrate the different nonlinearities in this problem, large displacements and rotations due to buckling, nonlinearity material, in some cases the buckling is plastic, but also the nonlinearity induced by an evolutionary contact. The modeling is carried out in 2D and 3D mesh, and in the latter case either by means of shell elements or by massive elements, the first aim being to corroborate the experimental observations more or less precisely. This work shows that even for external confinement with very low membrane rigidity, as for sand or expanded polystyrene, a significant gain in bearing capacity is observed, the buckling is delayed. The increase is substantial in the case of a total confinement which is not negligible and consistent in the case of local confinement. We have also found that the buckling load and the associated mode depend on the contact configuration, in particular the flexural rigidity of the confinement.
|
27 |
Simulation numérique de la planéité des tôles métalliques formées par laminage / Numerical simulation of flatness defects in rolling processesKpogan, Kékéli 27 November 2014 (has links)
Nous proposons dans cette thèse des modèles éléments finis pour décrire les phénomènes de flambage que l'on rencontre souvent en laminage des tôles minces. Partant d'un modèle simplifié qui suppose le mode de flambage harmonique dans le sens du laminage, le code permet de détecter des points de bifurcations, de décrire le comportement en post-flambage ou encore d'analyser l'influence de la traction globale sur les tailles de défauts et les modes de flambage. Le modèle n'étant pas prévu pour tenir compte des chargements complexes en laminage, nous avons proposé un autre modèle plus complet tenant compte de toutes les composantes des contraintes résiduelles et capable de coupler les phénomènes en amont comme en aval de l'emprise (emprise-flambage). Les modèles existants traitent généralement un couplage itératif entre l'emprise et le flambage (Thèse d’Abdelkhalek) ou un couplage direct, mais ce dernier est limité pour représenter les modes de flambage (Thèse de Counhaye). Dans cette thèse, nous proposons un couplage direct entre l'emprise et le flambage utilisant un code de laminage LAM3 pour décrire l'emprise et un modèle coque pour décrire le flambage. Nous avons utilisé la méthode Arlequin pour coupler les deux modèles. Cette méthode de couplage très prometteuse, est l'une des plus flexibles qui traite le couplage par superposition ou collage des modèles possédant des propriétés différentes. L'originalité du modèle développé réside essentiellement dans le déplacement de la zone de couplage à chaque incrément de temps. Pour valider le modèle développé, nous avons effectué des cas tests notamment un cas industriel et des cas académiques de laminage pouvant engendrer des défauts bords longs tout comme des plis longitudinaux que l'on observe souvent à la sortie de l'emprise. Les résultats issus de ce code ont été validés avec des mesures expérimentales et avec des modèles de références. Le modèle prédit bien les contraintes relaxées après flambage et montre bien les défauts de planéité correspondants / We propose in this thesis finite element models to describe buckling phenomena that are often encountered in thin sheet rolling processes. Starting with a simplified model assuming buckling mode as being harmonic in the rolling direction, the code can detect the bifurcation points and describe post-buckling behavior. The model is not intended to reflect complex rolling loads, we proposed another more complete model taking into account all components of the residual stresses and able to couple the phenomena at the upstream of the roll mill with the buckling phenomena at the downstream domain. Existing models generally treat iterative couplings between the zone under the bite and the buckling phenomena (Abdelkhalek's thesis) or direct coupling but it is limited to represent buckling modes (Counhaye's thesis). In this thesis, we propose a direct coupling between the upstream of the roll mill and the downstream domain using a rolling code LAM3 to describe the bite and a shell model to describe buckling phenomena in the downstream domain of the sheet. We used Arlequin method which is one of the most flexible coupling techniques to couple both models. This method leads to a partition of the space, each model being valid in a part of the domain. Both models should be considered valid in intersection of two zones. The key points are the definitions of a moving coupling zone, of a relevant coupling operator and of a simple procedure to build varying meshes.To validate the proposed model, we performed some test cases including an industrial case and academic rolling test cases including edge-wave defects or local folds out of the roll mill. The results have been validated by comparison with experimental measurements and with reference models
|
28 |
The influence of post-buckling damage on the tensile properties of single wood pulp fibers / Inverkan av skada efter knäckning på dragegenskaperna hos enskilda pappersmassa fibrerAndreolli, Raphael January 2021 (has links)
The rapid growth of plastic waste from food packaging around the world demands renewable substitutes, such as natural fibers and biocomposites. Wood fibers are natural fibers extracted from trees and are commonly used in packaging. In order for renewable alternatives to compete against plastics and other non-renewable materials, a better understanding of the mechanical properties of single fibers at the micro-scale are necessary. A great deal of previous research into the mechanical properties of single wood fibers has focused on their tensile behavior, however, little work has been published about their compressive behavior. It is difficult to measure the compressive strength of single fibers directly due to fiber buckling. The purpose of this study is to investigate how post-buckling of single wood pulp fibers affects the mechanical properties of fibers in tension. Two alternative hypotheses were tested through experiments in The Odqvist Laboratory for Experimental Mechanics at KTH. The major part of the thesis process has been invested in developing components called grippers, and testing methods for the Single Fiber Testing System, in order to be able to perform the experiments. The existing grippers were tested and alternative grippers were developed, as well as an alternative testing method without grippers, called the Paper frame method (PFM). PFM was used in the final experimental work to test the hypotheses. The main finding from this study is that there is not enough evidence to suggest that the tensile strength or tensile stiffness of single wood fibers are significantly reduced by post-buckling damage. This finding is mostly relevant in the research and development of fibrous material with larger distances between individual fibers, such as low-density fiber network materials. The main findings from the single fiber testing methods development were that the existing grippers cannot prevent fiber slippage. Furthermore, the alternative gripper 22A with its arc design generates higher grip force than previous grippers but lacks surface friction in the contact region in order to prevent fiber slippage. PFM has an experimental success rate of over 80 % for trained users and easy usage for the operator. The testing equipment Single Fiber Testing System displays several systematic errors occurring in the post-processing process of tests with cyclic loads. / Den snabba tillväxten av plastavfall från livsmedelsförpackningar runt om i världen kräver förnybara alternativ, såsom förpackningar gjorda av naturfibrer och biokompositer. Träfibrer är naturliga fibrer som utvinns från trä och används ofta i förpackningar. För att dessa förnybara alternativ ska kunna konkurrera mot plast och andra icke-förnybara material krävs en bättre förståelse av de mekaniska egenskaperna hos enskilda fibrer på mikronivå. Det finns en omfattande forskning om de mekaniska egenskaperna i drag hos enskilda träfibrer. Däremot existerar det lite publicerad forskning om träfibrers kompressionsegenskaper. Kompressionsegenskaperna är svåra att mäta direkt på grund av fiberknäckning. Syftet med denna studie är att undersöka hur skadan som uppstår efter knäckning av enskilda träfibrer påverkar de mekaniska egenskaperna hos fibrer i drag. Två alternativa hypoteser testades genom experiment i Odqvistlaboratoriet för experimentell mekanik vid KTH. Huvuddelen av examensarbetet har investerats i att utveckla grepparmar och testmetoder för testmaskinen Single Fiber Testing System, för att kunna utföra experiment. De befintliga grepparmarna testades och nya grepparmar utvecklades, och även en alternativ testmetod utan grepparmar som kallas Paper frame method (PFM) utvecklades. PFM användes i det sista experimentella arbetet för att pröva hypoteserna. Huvudslutsatsen från denna studie är att det inte finns tillräckligt med bevis för att stödja hypotesen att enskilda träfibrers draghållfasthet eller dragstyvhet reduceras av skada som uppstår efter knäckning. Detta resultat är mest relevant för forskning och utveckling av fibernätverks material med större avstånd mellan fibrerna, såsom fibermaterial med låg densitet. Huvudslutsatserna från utvecklingen av testmetoder var att de befintliga grepparmarna inte kunde förhindra fiberglidning. Den alternativa grepparmen 22A med sin bågkonstruktion genererade högre greppkraft än tidigare grepparmar men saknar rätt beläggning i kontaktområdet för att förhindra glidning av fiber. PFM har en hög test framgångsgrad med över 80 % för erfarna användare och den är enkel att arbeta med. Testmaskinen Single Fiber Testing System visar flera systematiska fel som blir märkbar under dataanalys av tester med cykliska belastningar.
|
Page generated in 0.0877 seconds