• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d’amplificateurs de puissance reconfigurables en technologie CMOS avancée pour une application 4G LTE / Design of reconfigurable power amplifiers in CMOS technology dedicated to 4G LTE application

Tuffery, Adrien 20 December 2012 (has links)
Cette thèse porte sur la conception d’amplificateurs de puissance reconfigurables en technologie CMOS avancée pour une application cellulaire de 4ème génération. Dans les systèmes de communication sans fil, le rendement énergétique est un critère primordial qui impacte la durée d’utilisation de la batterie. Principalement déterminé par la consommation d’énergie du transmetteur, il est plus particulièrement lié à celle de l’amplificateur de puissance (PA). Pour les terminaux mobiles de 4ème génération (4G), les techniques de transmission et les modulations utilisées pour atteindre les débits de données visés induisant une dynamique importante du signal à transmettre, l’implémentation de techniques d’amélioration du rendement autour du PA devient indispensable, afin de le reconfigurer en puissance.Nous avons mis au point dans ce travail de recherche des architectures innovantes utilisant les techniques d’amélioration du Power Cell Switching (PCS) et de l’Envelope Tracking (ET). Le double objectif visé étant d’améliorer significativement le rendement pour les faibles niveaux de puissance et d’apporter de la flexibilité par rapport à un PA utilisé seul. Une première architecture utilisant la technique du PCS totalement intégré en technologie CMOS 65nm de STMicroelectronics, mettant en œuvre des transformateurs comme combineurs de puissance, a été réalisée pour valider la fonctionnalité du concept proposé. Puis une deuxième architecture combinant les techniques du PCS et de l’ET a été conçue, afin d’évaluer les avantages qu’apporte la combinaison de ces deux techniques par rapport à un PA fonctionnant seul et à un PA développé utilisant la technique du PCS. / This thesis deals with the design of reconfigurable power amplifiers implemented in CMOS technology for 4G LTE application. For the next generation communication systems such as 4G LTE, orthogonal frequency division multiplexing (OFDM) is employed for a wideband communication. Indeed, signal information is encoded both in amplitude and phase domains, which results in a higher peak to average power ratio than for 2G and 3G systems. Consequently, the overall power amplifier (PA) efficiency does not only depend on efficiency at maximum power, but also and mainly on efficiency at back-off level where the PA operates most of the time. Obviously, classical PA architectures do not address this problem, because it can only achieve maximum efficiency at a single power level, usually around the peak output power. Therefore, the overall efficiency of the PA is considerably low and efficiency improvement techniques are required to increase the battery life-time. This thesis exposes innovative architectures using Power Cell Switching (PCS) and Envelope Tracking (ET) techniques. The main objective of the proposed architectures is to significantly improve the average efficiency in comparison with a stand-alone power amplifier at power back-off. Consequently, a reconfigurable PA architecture using a 4-step PCS technique has been implemented in CMOS 65nm technology. A second architecture was designed to evaluate the improvement obtained with the combination of these two techniques.
2

Enhanced Gate-Driver Techniques and SiC-based Power-cell Design and Assessment for Medium-Voltage Applications

Mocevic, Slavko 13 January 2022 (has links)
Due to the limitations of silicon (Si), there is a paradigm shift in research focusing on wide-bandgap-based (WBG) materials. SiC power semiconductors exhibit superiority in terms of switching speed, higher breakdown electric field, and high working temperature, slowly becoming a global solution in harsh medium-voltage (MV) high-power environments. However, to utilize the SiC MOSFET device to achieve those next-generation, high-density, high-efficiency power electronics converters, one must solve a plethora of challenges. For the MV SiC MOSFET device, a high-performance gate-driver (GD) is a key component required to maximize the beneficial SiC MOSFET characteristics. GD units must overcome associated challenges of electro-magnetic interference (EMI) with regards to common-mode (CM) currents and cross-talk, low driving loop inductance required for fast switching, and device short-circuit (SC) protection. Developed GDs (for 1.2 kV, and 10 kV devices) are able to sustain dv/dt higher than 100 V/ns, have less than 5 nH gate loop inductance, and SC protection, turning off the device within 1.5 us. Even with the introduction of SiC MOSFETs, power devices remain the most reliability-critical component in the converter, due to large junction temperature (Tj) fluctuations causing accelerated wear-out. Real-time (online) measurement of the Tj can help improve long-term reliability by enabling active thermal control, monitoring, and prognostics. An online Tj estimation is accomplished by generating integrated intelligence on the GD level. The developed Tj sensor exhibits a maximum error less than 5 degrees Celsius, having excellent repeatability of 1.2 degrees Celsius. Additionally, degradation monitoring and an aging compensation scheme are discussed, in order to maintain the accuracy of the sensor throughout the device's lifetime. Since ultra high-voltage SiC MOSFET devices (20 kV) are impractical, the modular multilevel converter (MMC) emerged as a prospective topology to achieve MV power conversion. If the kernal part of the power-cell (main constitutive part of the MMC converter) is an SiC MOSFET, the design is able to achieve very high-density and high-efficiency. To ensure a successful operation of the power-cell, a systematic design and assessment methodology (DAM) is explored, based on the 10 kV SiC MOSFET power-cell. It simultaneously addresses challenges of high-voltage insulation, high dv/dt and EMI, component and system protections, as well as thermal management. The developed power-cell achieved high-power density of 11.9 kW/l, with measured peak efficiency of n=99.3 %@10 kHz. It successfully operated at Vdc=6 kV, I=84 A, fsw>5 kHz, Tj<150 degrees Celsius and had high switching speeds over 100 V/ns. Lastly, to achieve high-power density and high-efficiency on the MV converter level, challenges of high-voltage insulation, high-bandwidth control, EMI, and thermal management must be solved. Novel switching cycle control (SCC) and integrated capacitor blocked-transistor (ICBT) control methodologies were developed, overcoming the drawbacks of conventional MMC control. These novel types of control enable extreme reduction in passive component size, increase the efficiency, and can operate in dc/dc, dc/ac, mode, potentially opening the modular converter to applications in which it was not previously used. In order to explore the aforementioned benefits, a modular, scalable, 2-cell per arm, prototype MV converter based on the developed power-cell is constructed. The converter successfully operated at Vdc=12 kV, I=28 A, fsw=10 kHz, with high switching speeds, exhibiting high transient immunity in both SCC and ICBT. / Doctor of Philosophy / In medium-voltage applications, such as an electric grid interface in highly populated areas, a ship dc system, a motor drive, renewable energy, etc., land and space can be very limited and expensive. This requires the attributes of high-density, high-efficiency, and reliable distribution by a power electronics converter, whose central piece is the semiconductor device. With the recent breakthrough of SiC devices, these characteristics are obtainable, due to SiC inherent superiority over conventional Si devices. However, to achieve them, several challenges must be overcome and are tackled by this dissertation. Firstly, as a key component required to maximize the beneficial SiC MOSFET characteristics, it is of utmost importance that the high-performance gate-driver be immune to interference issues caused by fast switching and be able to protect the device against a short-circuit, thus increasing the reliability of the system. Secondly, to prevent accelerated degradation of the semiconductor devices due to high-temperature fluctuations, real-time (online) measurement of the Tj is developed on the gate-driver to help improve long-term reliability. Thirdly, to achieve medium-voltage high-power density, high-efficiency modular power conversion, a converter block (power-cell) is developed that simultaneously addresses the challenges of high-voltage insulation, high interference, component and system protections, and thermal management. Lastly, a full-scale medium-voltage modular converter is developed, exploiting the advantages of the fast commutation speed and high switching frequency offered by SiC, meanwhile exhibiting exceptional power density and efficiency.
3

Nanogenerator for mechanical energy harvesting and its hybridization with li-ion battery

Wang, Sihong 08 June 2015 (has links)
Energy harvesting and energy storage are two most important technologies in today's green and renewable energy science. As for energy harvesting, the fundamental science and practically applicable technologies are not only essential in realizing the self-powered electronic devices and systems, but also tremendously helpful in meeting the rapid-growing world-wide energy consumptions. Mechanical energy is one of the most universally-existing, diversely-presenting, but usually-wasted energies in the natural environment. Owing to the limitations of the traditional technologies for mechanical energy harvesting, it is highly desirable to develop new technology that can efficiently convert different types of mechanical energy into electricity. On the other hand, the electricity generated from environmental energy often needs to be stored before used to drive electronic devices. For the energy storage units such as Li-ion batteries as the power sources, the limited lifetime is the prominent problem. Hybridizing energy harvesting devices with energy storage units could not only provide new solution for this, but also lead to the realization of sustainable power sources. In this dissertation, the research efforts have led to several critical advances in a new technology for mechanical energy harvesting—triboelectric nanogenerators (TENGs). Previous to the research of this dissertation, the TENG only has one basic mode—the contact mode. Through rational structural design, we largely improved the output performance of the contact-mode TENG and systematically studied their characteristics as a power source. Beyond this, we have also established the second basic mode for TENG—the lateral sliding mode, and demonstrated sliding-based disk TENGs for harvesting rotational energy and wind-cup-based TENGs for harvesting wind energy. In order to expand the application and versatility of TENG by avoid the connection of the electrode on the moving part, we further developed another basic mode—freestanding-layer mode, which is capable of working with supreme stability in non-contact mode and harvesting energy from any free-moving object. Both the grating structured and disk-structured TENGs based on this mode also display much improved long-term stability and very high energy conversion efficiency. For the further improvement of the TENG’s output performance from the material aspect, we introduced the ion-injection method to study the maximum surface charge density of the TENG, and for the first time unraveled its dependence on the structural parameter—the thickness of the dielectric film. The above researches have largely propelled the development of TENGs for mechanical energy harvesting and brought a big potential of impacting people’s everyday life. Targeted at developing sustainable and independent power sources for electronic devices, efforts have been made in this dissertation to develop new fundamental science and new devices that hybridize the nanogenerator-based mechanical energy harvesting and the Li-ion-battery-based energy storage process into a single-step process or in a single device. Through hybridizing a piezoelectric nanogenerator with a Li-ion battery, a self-charging power cell has been demonstrated based on a fundamentally-new mechanical-to-electrochemcial process. The triboelectric nanogenerator as a powerful technology for mechanical energy harvesting has also been hybridized with a Li-ion battery into a self-charging power unit. This new concept of device can sustainably provide a constant voltage for the non-stop operation of electronic devices.

Page generated in 0.0662 seconds