• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an Anti-collision and Navigation System for Powered Wheelchairs

How, Tuck-Voon 01 January 2011 (has links)
Powered wheelchairs offer a means of independent mobility for older adults who are unable to walk and cannot propel a manual wheelchair. Unfortunately, cognitively impaired older adults may be denied this means of independent mobility. There is concern that these adults are unable to drive a powered wheelchair safely or properly. Intelligent wheelchairs offer an approach to address this problem. This research outlines the development and evaluation of an Intelligent Wheelchair System (IWS) that is proposed to make powered wheelchairs safer and easier to use for cognitively impaired older adults. The IWS has anti-collision and navigation functions. Hardware results show a 1000% increase in computational speed compared to the previous IWS. Clinical results with dementia patients show that the IWS has the potential to increase safety by reducing frontal collisions, and by promoting safe completion of movement tasks. Usability of the system may be an issue.
2

Development of an Anti-collision and Navigation System for Powered Wheelchairs

How, Tuck-Voon 01 January 2011 (has links)
Powered wheelchairs offer a means of independent mobility for older adults who are unable to walk and cannot propel a manual wheelchair. Unfortunately, cognitively impaired older adults may be denied this means of independent mobility. There is concern that these adults are unable to drive a powered wheelchair safely or properly. Intelligent wheelchairs offer an approach to address this problem. This research outlines the development and evaluation of an Intelligent Wheelchair System (IWS) that is proposed to make powered wheelchairs safer and easier to use for cognitively impaired older adults. The IWS has anti-collision and navigation functions. Hardware results show a 1000% increase in computational speed compared to the previous IWS. Clinical results with dementia patients show that the IWS has the potential to increase safety by reducing frontal collisions, and by promoting safe completion of movement tasks. Usability of the system may be an issue.
3

Ambiente de treinamento por teleoperação para novos usuários de cadeiras de rodas motorizadas baseado em múltiplos métodos de condução

92-99394-9353 10 August 2018 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-09-17T17:22:44Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_impressao.pdf: 2956113 bytes, checksum: e6a4b36626de2a1892da7e9ffd7ac14a (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-09-17T17:22:55Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_impressao.pdf: 2956113 bytes, checksum: e6a4b36626de2a1892da7e9ffd7ac14a (MD5) / Made available in DSpace on 2018-09-17T17:22:55Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_impressao.pdf: 2956113 bytes, checksum: e6a4b36626de2a1892da7e9ffd7ac14a (MD5) Previous issue date: 2018-08-10 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Currently, diverse existing training environments help new users of electric powered wheelchairs (EPW) learn how to drive, acquaint and improve their abilities with these assistive devices. Several authors are developing such environments, and most of them use virtually simulated wheelchairs. Despite the similarities between virtual and real wheelchairs, it is easier to drive the real device because representation of the wheelchair physical behavior is still a problem for virtual simulated environments. Concerning the driving methods, most of them are based on a joystick, which does not give the opportunity for users to test, practice and acquaint themselves with new technologies, such as driving through eye movements. This work implements and tests a more realistic approach for a training environment dedicated to new users of EPW. The proposed system is based on a real EPW controlled by teleoperation, and it is flexible enough to attend to multiple driving methods. An architecture that allows a user to send command messages to control a real EPW through the Internet was implemented to validate the system. The implemented driving methods were conventional joystick, eye-tracker and a generic human-machine interface. For the system’s evaluation, scenarios were created considering the implemented driving methods, and also scenarios considering a long distance teleoperation. The experimental results suggest that new users can practice safely using a real EPW through the Internet, even in a situation with a communication delay of 130.2 ms (average). Furthermore, the proposed system showed potential for attending new EPW users with different types of disabilities and to be a low-cost approach that could be applied in developing countries. / Atualmente, diversos ambientes de treinamento existentes ajudam novos usuários de cadeira de rodas motorizada (CRM) a aprender a comandar, se familiarizar e aprimorar suas habilidades. Vários autores estão desenvolvendo esses ambientes, e a maioria deles está usando CRM virtualmente simulada. Apesar das semelhanças entre a CRM virtual e a real, observouse que é mais fácil comandar o dispositivo real. Isso ocorre porque nesses ambientes virtuais, a representação do comportamento físico da CRM ainda é um problema. Outro aspecto observado, foi a respeito dos métodos de condução, onde a maioria dos trabalhos utiliza apenas o joystick. Porém, esse método não oferece a oportunidade a usuários com deficiência severa de aprender a comandar a partir de novas tecnologias, como por exemplo, o rastreamento ocular. Para superar essas dificuldades, este trabalho propõe, implementa e valida uma abordagem mais realista, a qual é baseada em treinamento por teleoperação e por múltiplos métodos de condução. Foi implementada uma arquitetura que permite ao usuário enviar comandos remotamente para comandar uma CRM real a longas distâncias. Os métodos de condução implementados foram por joystick, eye-tracker e por meio de uma interface humanomáquina genérica. Para a avaliação do sistema, foram criados cenários considerando diferentes configurações. Os resultados experimentais sugerem que novos usuários podem praticar com segurança utilizando uma CRM real através da Internet, mesmo em uma situação com delay de 130,2 ms (média). O sistema proposto mostrou potencial em atender novos usuários de CRM com diferentes tipos de deficiência, bem como de ser uma abordagem de baixo custo com possibilidade de ser aplicada em países em desenvolvimento.
4

Modélisation et analyse comportementale du système Pilote-fauteuil roulant électrique / Modeling and behavioral analysis of the pilot-powered wheelchair system

Zatla, Hicham 11 December 2018 (has links)
Les fauteuils roulants électriques (FRE) ont permis à nombre de personnes handicapés moteurs de retrouver une mobilité satisfaisante, ce qui a amélioré leur qualité de vie, un vaste champ d’activités leur étant devenu accessible. Lors de la prescription d’un FRE ou d’une phase d’apprentissage à la conduite il est cependant nécessaire d’évaluer les capacités de ces personnes à piloter un fauteuil. Dans ce contexte, notre objectif consiste à déterminer des paramètres pertinents permettant de décrire la qualité de la conduite d’un FRE pour des personnes ayant des déficiences motrices sévères. Tout d’abord, nous avons modélisé le système pilote-FRE par le modèle OPCM (Optimal Preview Control Model) de Sharp. Ce modèle est basé sur la distance anticipée (Dp) par l’utilisateur durant sa conduite du FRE. Cette distance a été estimée grâce à un système de suivi du regard combiné avec le simulateur 3D ViEW du laboratoire LCOMS. Un panel de 15 sujets valides a été recruté pour faire des tests de conduite sur simulateur et valider la modélisation OPCM. La distance Dp a permis de décrire le comportement du pilote. Ensuite, une analyse de la distance anticipée Dp en fonction de différentes zones du parcours (slalom serré, virage, slalom large), a montré que ce paramètre peut être utilisé pour différencier les différents comportements de conduite liées aux différentes situations du parcours. Ensuite nous avons comparé cette distance anticipée entre deux groupes, familiarisés et novices vis-à-vis de la conduite en FRE. L’analyse a montré que le groupe familiarisé présente une distance Dp plus importante que le groupe novice. Enfin, une dernière expérience a eu lieu au Centre de Réadaptation de Flavigny sur Moselle (54, France). Nous avons estimé la distance anticipée (Dp) pour des sujets à déficiences motrices sévères, afin de valider le paramètre Dp comme indicateur de performance. Une étude de cas a été établie portant sur 5 enfants en situation de handicap, en comparant leurs résultats à ceux obtenus précédemment sur un panel de personnes valides / The Powered wheelchairs (PW) allowed many people with motor disabilities to find a suitable mobility, which improved their quality of life. Hence, a vast field of activities has become accessible for them. When prescribing a PW or in a learning phase, however, it is necessary to evaluate the ability of these people to drive a wheelchair. In this context, our goal is to determine relevant parameters to describe the quality of driving on PW for people with disabilities. First, we modeled the pilot-PW system using the OPCM (Optimal Preview Control Model) model proposed by Sharp. This model is based on the preview distance (Dp) of the user during his driving. This distance has been estimated thanks to an eye-tracking system combined with the ViEW 3D simulator of the LCOMS laboratory. A panel of 15 healthy subjects was recruited to drive the PW on a 3D simulator and to validate the OPCM modeling. This distance Dp allows to describe the behavior of the pilot. If this distance is important, it guarantees the tracking trajectory of the OPCM model. Otherwise, the OPCM model diverges. This shows that if the user looks a long part of his future path, he will better anticipate the future control applied to the PW (change of direction, braking, etc.), which allows him to follow his path. In this situation the user has a tracking behavior. In the otherwise, the user’s behavior is rather compensatory. Then, an analysis of preview distance Dp with respect to the different zones of the path (tight slalom, turn, wide slalom), showed that the parameter Dp can be used to differentiate the different driving behaviors related to the different situations of the path. Next, we compared the preview distance between two groups, familiar and novice with regard to the PW driving. The analysis showed that the familiar group has a greater distance value than the novice group. Finally, a last experiment took place at the Rehabilitation Center of Flavigny sur Moselle (54, France). We estimated the preview distance (Dp) for subjects with severe motor impairment, in order to validate the parameter Dp as a performance indicator. A case study analysis was established on five children with disabilities comparing their results with those previously obtained with the healthy subjects
5

The significance of assistive devices in the daily life of persons with stroke and their spouses / Betydelsen av hjälpmedel i vardagslivet för personer med stroke och deras närstående

Pettersson, Ingvor January 2006 (has links)
The overall aim of this research project was to explore and describe the significance of assistive devices in daily life. The project involves two qualitative and two quantitative studies. Three of these studies were from the perspective of persons with stroke and one from the perspective of spouses of persons with stroke. A hermeneutic phenomenological lifeworld approach was used in the qualitative studies and data was obtained through conversational interviews with the two study groups, 22 persons with stroke and 12 spouses of persons with stroke, after the devices had been used for about a year. The results indicated that the lived experiences of assistive devices in respect of the different lifeworld existentials (lived body, lived space, lived time, lived human relation) are closely interconnected in both study groups. The lived body existential included aspects of habits, feelings and the incorporation, figuratively speaking, of the devices into their own bodies. Lived space concerned the gradual development of a new view of the environment and the devices’ role as a prerequisite for being able to live at home. The devices brought about a changed relation to lived time with respect to the temporal perspectives of past, present and future. To be able to take control of one’s own time was an important experience that the devices facilitated. Assistive devices were an integral part of the lived human relation between the couples in the study groups, as well as between the disabled persons/spouses and other people, including the health-care professionals. The devices contributed either to the maintenance or the change of social roles, but they sometimes also gave rise to the experience of being stigmatised. The results in the case of both study groups showed that the use of different devices is complex and often contradictory, especially when it comes to persons with stroke. Overall the persons’ experiences of the advantages of the devices overshadowed their experiences of the disadvantages. The quantitative studies included a pre- and post-assessment design. Thirty-two persons with disabilities after stroke were included. The impact of an outdoor powered wheelchair on activity and participation (IPPA, WHODAS II) and quality of life (PIADS, EQ-5D) was measured. Statistical analysis with mainly non-parametric tests was used to determine significant within-group and between-group changes after intervention. The conceptual framework ICF was used in one of the quantitative studies when classifying the participants’ stated problems. The results showed that the outdoor powered wheelchair is an essential device for persons with disabilities after stroke with regard to overcoming activity limitation and participation restrictions in everyday life. Furthermore it mostly has a positive impact on such users’ quality of life. However, it is also important to highlight the negative experiences of a few with regard to the use of powered wheelchairs. In sum, these results will enable prescribers to better understand the individual experiences of using assistive devices and the individuals’ and the families’ need for support in connection with the prescription of assistive devices, the particular example being powered wheelchairs.
6

État des connaissances sur les fauteuils roulants motorisés intelligents (FRMIs) et recommandations pour la poursuite de leur développement : un examen de la portée

Todam Nguepnang, Nathalie 06 1900 (has links)
Contexte : La participation sociale d’utilisateurs de fauteuils roulants peut être affectée par certains facteurs, tels que l’accessibilité et les caractéristiques individuelles de ces derniers, pouvant limiter leur pleine implication dans la réalisation des activités signifiantes de la vie quotidienne. Afin d’améliorer leur mobilité, différents prototypes de fauteuils roulants motorisés intelligents (FRMIs) sont en développement, à l’intention de personnes présentant des déficiences physiques, cognitives ou sensorielles, et qui sont dans l’incapacité d’utiliser un fauteuil roulant motorisé (FRM). Le but visé est de leur procurer davantage d’autonomie dans leurs déplacements, et tenter ainsi de répondre à leurs besoins en termes de mobilité et de participation sociale. Objectif : Explorer la littérature portant sur le développement de FRMIs afin de comprendre dans quelle mesure les prototypes existants répondent aux besoins réels des utilisateurs, d’identifier les limites des études, et de faire des recommandations pour mieux orienter le développement continu des FRMIs. Méthodologie : Un examen de la portée a été réalisé suivant les six étapes proposées par Arskeys et O’Malley (2005), puis bonifiées par Levac et al. (2010). Les études publiées en anglais ou en français, jusqu’à septembre 2020, ont été consultées. Résultats : Au total, 41 études ont été retenues pour l’analyse. Les résultats suggèrent que les différentes technologies intégrées aux FRMIs pourraient contribuer à répondre à certains besoins d’utilisateurs présentant différentes incapacités, contribuer à améliorer leur mobilité, procurer de l’autonomie et favoriser leur participation sociale. Par ailleurs, des résultats complémentaires ont permis d’identifier : (a) d’autres technologies, pouvant favoriser davantage le sentiment d’autonomie et de confort aux utilisateurs, et (b) d’autres usages possibles du FRMI en clinique. Une limite importante identifiée est l’absence d’études expérimentales pouvant permettre d’évaluer l’efficacité du FRMI. Le point de vue des proches-aidants est également peu rapporté dans la littérature. Conclusion : Des études futures seraient à envisager en vue d’améliorer les prototypes de FRMIs existants. / Background: The level of social participation among wheelchair users can be affected by factors such as accessibility, as well as their individual clinical profile, which can limit their full involvement in meaningful activities of daily living. To meet their needs in terms of mobility and social participation, different prototypes of intelligent powered wheelchairs (IPW) are being developed, in order to improve the mobility of people with physical, cognitive or sensorial impairments, who have difficulties using standard powered wheelchairs. Objective: The aim of this study was to map the existing literature on the nature of studies carried out on IPWs to better understand how the existing IPWs meet the needs of powered wheelchair users, and to better guide the ongoing development of IPWs. Methods: A scoping review was conducted in accordance with the six stages of Arskeys and O’Malley’s (2005) framework which was later enhanced by Levac et al. (2010). All studies available until September 2020, written in English or in French, were included. Results: A total of 41 studies were included in the scoping review. The results suggest that the various technologies integrated into IPWs could meet some of the needs of powered wheelchair users (PWu), could help improve mobility, provide independence, and promote social participation of some PWu. Moreover, additional results were identified: (a) other technologies, that could provide more independence and comfort to users, and (b) other clinical uses of IPW. An important limitation of the literature is the lack of experimental studies that could help assessing the efficiency of IPW. The point of view of caregivers is also less reported in the literature. Conclusion: Further studies should be considered to improve the functioning of the existing prototypes of IPW.

Page generated in 0.0574 seconds