Spelling suggestions: "subject:"preview"" "subject:"areview""
1 |
Advertising Bias in Video Game MagazinesDewar, Gregory 10 April 2018 (has links)
The potential for advertising bias forming a conflict of interest with editorial content is a problem for any publication, and those with a gaming focus are no exception. Reviews in these publications can make or break a game and in some cases — a developer. The purpose of this content analysis of three gaming magazines is to examine whether publications in which developers purchase advertising are biased in favor of those developers’ games. The magazines chosen were: Game Informer, GamesTM, and Edge. The working definition of bias used is the financial pressure that advertisers exert on the editorial content of publications through the purchasing of advertising space. Video game magazines were chosen for this study due to readers’ reliance on reviews to make purchase decisions. No overt advertising bias was found. There was no significant link between the coverage of games and ads for those games in the same issue. A more subtle case for bias was found, however, when the entire sample of each magazine was looked at. For example, games reviewed anywhere in the sample in a given magazine tended to more often have an advertisement and for it to be larger, and this was especially true if the game received positive coverage. Other interesting results showed that magazines had a largely varying spread in the tone of reviews and that the majority of ads were for non-games, though game ads were larger on average.
|
2 |
Processing in the perceptual span : investigations with the n+2-boundary paradigmRisse, Sarah January 2011 (has links)
Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes’ movements during reading.
Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, & Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel.
In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing.
Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading. / Die kognitive Psychologie beschäftigt sich traditionell mit dem Zusammenspiel von Wahrnehmung, Kognition und Verhaltenssteuerung. Die Untersuchung von Blickbewegungen beim Lesen bildet dabei ein Forschungsfeld, in dem die Prozesse und Interaktionen dieser Subsysteme in einem klar definierten Rahmen untersucht werden können. Dabei geht es speziell um die Frage, wie viel Information visuell wahrgenommen wird, wie die kognitive Weiterverarbeitung der visuellen Buchstabeninformation über lexikalische Wortverarbeitung hin zu einem inhaltlichen Satzverständnis zeitlich koordiniert ist, und wie sich diese Prozesse auf das Verhalten – die Steuerung der Blickbewegung – auswirken. Verschiedene Modelle zur Erklärung des spezifischen Blickbewegungsverhaltens beim Lesen wurden vorgeschlagen (für einen Überblick siehe Reichle, Rayner, & Pollatsek, 2003). Einige Modelle basieren auf der Annahme serieller Aufmerksamkeitsverschiebung von Wort zu Wort, wohingegen andere verteilte Aufmerksamkeit auf eine Region mehrerer Wörter im Satz gleichzeitig annehmen. Da Aufmerksamkeit eng mit der eigentlichen Wortverarbeitung assoziiert ist, besteht ein wesentlicher Unterschied zwischen den Modellen darin, dass die eigentlichen Wortverarbeitungsprozesse entweder ebenfalls strikt seriell oder parallel erfolgen. Trotz solch entscheidender Unterschiede im zeitlichen Verlauf der Wortverarbeitung können beide Modellklassen viele der Benchmark-Effekte beim Lesen hinreichend erklären. Tatsächlich scheint es nicht viel empirische Evidenz zu geben, die die Grundannahmen der Modelle falsifizieren könnte. Die Frage, ob und wie noch nicht direkt angesehene Wörter rechts der Fixation die Blickbewegung beeinflussen, wird in der Debatte über serielle oder parallele Wortverarbeitung oft als entscheidend betrachtet. Insbesondere wird diskutiert, bis zu welcher Entfernung parafoveale Wörter vorverarbeitet werden und wie das die gegenwärtige und folgende Wortverarbeitung beeinflusst.
In einer Serie von vier Leseexperimenten wurde die Vorverarbeitung von Wörtern an den Grenzen der Wahrnehmungsspanne untersucht. Die vorliegende Arbeit versucht zudem, über einen einfachen Existenzbeweis der Vorverarbeitung von Wörtern in solchen Distanzen hinaus zu gehen. Mit einer Manipulation, die verschiedene Quellen solcher weitreichenden Vorverarbeitungseffekte dissoziiert, können Nutzen und Kosten der parafovealen Vorschau in einer einzigen Analyse untersucht und über eine Zielregion von drei Wörtern hinweg verfolgt werden. Dieselbe Manipulation überprüft gleichzeitig die Rolle okulomotorischer Fehler als Ursache für nicht lokale, verteilte Effekte beim Lesen. Die Ergebnisse tragen zu einem differenzierteren Verständnis der Wortverarbeitung in der Wahrnehmungsspanne und der zeitlich-räumlichen Verteilung der Aufmerksamkeit beim Lesen bei.
|
3 |
Abstrakt normprövning : En komparativrättslig studie av det svenska Lagrådet och den azerbajdzjanska författningsdomstolens rättstillämpning av den abstrakta normprövningenAgharzayeva, Leyla, Bakhtiyarova, Dilnaza January 2023 (has links)
This public law study aims to analyze abstract norm review in Sweden and Azerbaijan, conducted byspecific entities – the Swedish Council on Legislation (Lagrådet) and the Constitutional Court ofAzerbaijan, respectively. The primary focus is to examine and compare the approaches of Lagrådet andthe Azerbaijani Constitutional Court in abstract norm control.In this essay, a comparison is made between abstract norm review in Sweden and Azerbaijan, revealingsimilarities in purpose but significant differences in the powers and the binding nature of decisions.Historically, Sweden has undergone a longer constitutional development, while Azerbaijan hasundergone changes following its independence from the Soviet Union, which is noticeable throughvarious historical and political contexts shaping their norm review processes.In practice, Lagrådet in Sweden plays an advisory role during the legislative process. Although itsadvice carries significant weight, the final decision to follow or deviate from these recommendationslies with the government. Meanwhile, the Constitutional Court in Azerbaijan possesses direct legallybinding authority over its decisions, which affect all organs and individuals in the country.The difference in independence and legitimacy between these institutions is reflected in their impact onlegislation. Despite its active role, Lagrådet is subordinate to the government's decisions. Meanwhile,the Constitutional Court in Azerbaijan has a more independent and tangible influence on legislation.
|
4 |
Preview Benefit and Parafoveal-on-Foveal Effects from Word N+2Kliegl, Reinhold, Risse, Sarah, Laubrock, Jochen January 2007 (has links)
Using the gaze-contingent boundary paradigm with the boundary placed after word n, we manipulated preview of word n+2 for fixations on word n. There was no preview benefit for first-pass reading on word n+2, replicating the results of Rayner, Juhasz, and Brown (2007), but there was a preview benefit on the three-letter word n+1, that is, after the boundary, but before word n+2. Additionally, both word n+1 and word n+2 exhibited parafoveal-on-foveal effects on word n. Thus, during a fixation on word n and given a short word n+1, some information is extracted from word n+2, supporting the hypothesis of distributed processing in the perceptual span.
|
5 |
Semantic preview benefit in eye movements during reading: a parafoveal past-priming studyHohenstein, Sven, Laubrock, Jochen, Kliegl, Reinhold January 2010 (has links)
Eye movements in reading are sensitive to foveal and parafoveal word features. Whereas the influence of orthographic or phonological parafoveal information on gaze control is undisputed, there has been no reliable evidence for early parafoveal extraction of semantic information in alphabetic script. Using a novel combination of the gaze-contingent fast-priming and boundary paradigms, we
demonstrate semantic preview benefit when a semantically related parafoveal word was available during the initial 125 ms of a fixation on the pre-target word (Experiments 1 and 2). When the target location was made more salient, significant parafoveal semantic priming occurred only at 80 ms (Experiment 3). Finally, with short primes only (20, 40, 60 ms) effects were not significant but
numerically in the expected direction for 40 and 60 ms (Experiment 4). In all experiments, fixation durations on the target word increased with prime durations under all conditions. The evidence for extraction of semantic information from the parafoveal word favors an explanation in terms of parallel
word processing in reading.
|
6 |
Set-Based User InteractionTerry, Michael Andrew 13 July 2005 (has links)
This work demonstrates specific ways that the design of computer user interfaces can influence how individuals structure the problem solving process. In particular, an observational study of expert users of an image manipulation application indicates that current user interfaces make it difficult to explore sets of alternatives in parallel, despite this being a common problem solving practice. As a consequence, individuals tend to engage in highly linear problem solving processes. To address this problem, this work introduces the concept of a set-based interface, or an interface that facilitates the generation, manipulation, evaluation, and management of sets of alternative solutions. The concepts of a set-based interface are demonstrated in two tools, Side Views and Parallel Pies, both designed for use in the domain of image manipulation. Side Views automatically generates sets of previews for one or more commands and their parameters, enabling side-by-side comparison of alternatives. Parallel Pies streamlines the process of forking, or the act of creating new, standalone alternatives, and provides a visualization to evaluate results. Two controlled laboratory studies and a third think-aloud study reveal that these tools lead to users more broadly exploring the solution space and developing more optimal solutions for some types of tasks. These studies also show that the ability to broadly explore can initially be overused, adversely affecting solution quality if not enough time is spent maturing a single solution instance. This enthusiastic use of exploration tools is especially notable because such features are entirely optional to developing a solution. As such, these results suggest the need to further research ways user interfaces can support individuals in rapidly generating sets of alternative solutions. To support future research in this direction, this work contributes a set of metrics for quantifying breadth and depth of exploration; backtracking; and dead-ends in the problem solving process. A visualization called a process diagram aids in communicating these concepts.
|
7 |
The Effect of Dividing Attention on the Maintenance of Object RepresentationsMayer, Jillian Christine 01 December 2010 (has links)
Numerous theories have been developed in explanation of object perception, such as Feature Integration Theory, which posits that an object is perceived after two stages: a pre-attentive stage and a focused attention stage. It is during the focused attention stage that a representation of the perceived object is formed. Theories such as object file theory account for the maintenance of these object representations following their creation. Evidence for object file theory has been provided by studies of the object specific preview benefit. This thesis seeks to examine the effect that dividing attention has on the maintenance of object representations. Using the tenets of object file theory and the cortical field hypothesis for dual task interference, it is hypothesized that by presenting participants with two simultaneous tasks which make use of overlapping cortical areas the object representation initially formed will be lost resulting in the loss of the object specific preview benefit. Whereas presenting participants with two simultaneous tasks which are associated with spatially separate, or non-overlapping, cortical regions will not result in the loss of the object specific preview benefit.
|
8 |
Individual Differences in Phonological Parafoveal Preview Effects RevisitedDeibel, Megan E. 29 June 2023 (has links)
No description available.
|
9 |
Preview based Semi-Active Suspension ControlThamarai Kannan, Harish Kumar 30 May 2024 (has links)
While semi-active suspensions help improve the ride comfort and road holding capacity of the vehicle, they tend to be reactive in nature and thus leave a lot of room for improvement. Incorporating road preview data allows these suspensions to become more proactive rather than reactive and helps achieve a higher level of performance. A lot of preview-based control algorithms in literature tend to require high computational effort to arrive at the optimal parameters thus making it difficult to implement in real time. Other algorithms tend to be based upon lookup tables which classify the road input into different categories and hence lose their effectiveness when mixed types of road profiles are encountered that are difficult to classify. Thus a novel control algorithm is developed which is easy to implement online and more responsive to the varying road profiles that are encountered by the vehicle.
A numerical methods-based semi-active suspension control algorithm and a Model Predictive Control(MPC)-based semi-active suspension control algorithm are developed that can leverage the data from the upcoming road profile to increase the ride comfort of the vehicle. The numerical methods-based algorithm is developed for the sole purpose of determining the maximum possible ride comfort that can be achieved using semi-active dampers capable of altering their damping characteristics every 0.01 seconds. The MPC-based algorithm is a more realistic algorithm that can be implemented in real-time and achieves on average 70% of the ride comfort that the numerical methods-based algorithm can with minimal computational effort. / Master of Science / Semi-active suspensions help cars ride more smoothly and handle better on the road. However, they often react to bumps and potholes only after hitting them, which means there's room for improvement. By using information about the road ahead, these suspensions can adjust before reaching rough spots, making the ride even better.
To make this work, a new control system was developed. This system includes two parts. The first part uses detailed calculations to find the best possible comfort level, adjusting the suspension every 0.01 seconds. This method shows the highest comfort that can be achieved but is too complex for everyday use.
The second part uses a simpler method called Model Predictive Control (MPC). This part is practical for real-time driving and achieves about 70% of the best possible comfort. It doesn't need as much computing power and can quickly adapt to different road conditions, making it ideal for normal driving. This new system improves driving comfort and safety by making suspensions smarter and more efficient.
|
10 |
Real-Time Anticipatory Suspension Control for Single Event DisturbancesKappes, Christopher 26 July 2017 (has links)
Most commercial vehicles currently on the market are still equipped with a passive suspension system, while some luxury brands may already use an adaptive suspension. Active suspension systems on the other hand are rarely found, however, they offer great opportunities to close the gap of the well-known trade-off between ride comfort and handling. Besides that, they can also be used to mitigate single event disturbances, an objective of the USA army as announced in a solicitation which initiated and motivated this research. In addition to that, several studies were found stating the impact and danger of potholes and their impact on the vehicle and passenger.
Reviewing the literature, several control strategies for controlling active suspension systems were found. However, most of these approaches used feedback control and did not try to mitigate single event disturbances. Since literature also suggested making use of look ahead preview, research at the Performance Engineering Research Lab at Virginia Tech was started in 2015 combining look ahead preview and an adaptive system to generate optimal force profiles. This introductory research succeeded and proved the used approach to be very promising. However, the used adaptive system was not designed to operate in real-time and did not show any correlation between different road profiles.
Therefore, the main objective of this research project is to evaluate and analyze each of the adaptive systems by searching for correlations in their solutions. The results then should be used in order to design a control law which emulates the adaptive system and can be used in a real-time environment.
First, an overall research methodology was derived. According to this a software application was developed which extracts ideal force profiles from single event disturbance signals in order to mitigate their impact to the vehicle. The application uses a quarter car model with a partially loaded active suspension system, a set of predefined road profiles, a road profile preprocessor, and an adaptive algorithm. The preprocessing includes geometric filtering using a Tandem-Cam Model and the adaptive processor used an iterative version of the Filtered-X Last-Mean-Square algorithm.
During evaluation and analysis of several generated data sets, high correlations in the generated and adjusted adaptive systems were discovered. From these an empirical and theoretical universal filter model was derived, which was then used to design an open-loop control law named Optimal Force Control.
The original control law and an adjusted version designed for a real-time environment were tested for all predefined road profiles over all considered vehicle velocities and prove to perform much better than the offline solution using the adaptive system.
In summary, a control law named Optimal Force Control was designed which can be used and implemented in a vehicle to extract an analytical and ideal force profile given a road profile input. Implementing an active suspension system with tracking controller, this approach can be used in order to mitigate single event disturbance signals by reducing the vertical vehicle acceleration. / Master of Science / Most commercial vehicles currently on the market are still equipped with a suspension system consisting of springs and shock absorbers (passive suspensions), while some luxury brands already use suspension systems including parts which can change their behavior based on the driving situation (active suspensions). While these active suspension systems are still rarely found, they offer great opportunities to make the vehicle stable and at the same time easy to handle. Also, they have the potential to reduce the risk of an accident while driving over a pothole or disturbance in the road, an objective of the USA Army as announced in a solicitation which initiated and motivated this research.
Reviewing the literature, several control strategies for controlling active suspension systems were found. However, most of these approaches required measuring the current state of the suspension system. Research at the Performance Engineering Research Lab at Virginia Tech was started in 2015 in order to control active suspension systems by using data of the road profile ahead of the vehicle. This introductory research succeeded and proved the approach used to be very promising. However, the used system was designed to work in a laboratory environment only.
Therefore, the main objective of this research project was to evaluate and analyze the used control strategy by searching for intersections and similarities in the different solutions. The results were then used to design a control strategy which can be applied in a real-world vehicle environment.
First, an overall research methodology was derived. According to this methodology a software application was developed that generates the ideal control signal for the active suspension system in order to reduce the impact of a disturbance in the road profile. To that end a set of predefined road profiles were used, and a computer algorithm called Filtered-X Last-Mean-Square algorithm calculated the ideal control signal for the active suspension system.
During the evaluation and analysis of several generated data sets, a lot of intersections and similarities were discovered. Based on these findings a new control strategy was designed in order to be implemented into a real-world vehicle environment.
The new control strategy for the real-world vehicle environment was tested for all predefined road profiles over all considered vehicle velocities and proved to outperform the control strategy for the laboratory environment.
In summary, a new control strategy named Optimal Force Control was designed, which can be used and implemented in a vehicle. The implementation of an active suspension system can be used to mitigate disturbances in the road by reducing the vertical vehicle acceleration.
|
Page generated in 0.0314 seconds