21 |
Structure of and phase transformations in bulk amorphous (GaSb)â†1â†-â†x(Geâ†2)â†xSapelkin, Andrei V. January 1997 (has links)
No description available.
|
22 |
Kinetics and temperature- and pressure-induced polymorphic phase transformations in molecular crystalsSheridan, Andrew Keith January 1994 (has links)
No description available.
|
23 |
The Asperity-deformation Model Improvements and Its Applications to Velocity InversionBui, Hoa Q. 16 January 2010 (has links)
Quantifying the influence of pressure on the effective elastic rock properties
is important for applications in rock physics and reservoir characterization. Here I
investigate the relationship between effective pressure and seismic velocities by performing
inversion on the laboratory-measured data from a suite of clastic, carbonate
and igneous rocks, using different analytic and discrete inversion schemes. I explore
the utility of a physical model that models a natural fracture as supported by asperities
of varying heights, when an effective pressure deforms the tallest asperities,
bringing the shorter ones into contact while increasing the overall fracture stiffness.
Thus, the model is known as the ?asperity-deformation? (ADM) or ?bed-of-nails?
(BNM) model. Existing analytic solutions include one that assumes the host rock is
infinitely more rigid than the fractures, and one that takes the host-rock compliance
into account. Inversion results indicate that although both solutions can fit the data
to within first-order approximation, some systematic misfits exist as a result of using
the rigid-host solution, whereas compliant-host inversion returns smaller and random
misfits, yet out-of-range parameter estimates. These problems indicate the effects of
nonlinear elastic deformation whose degree varies from rock to rock. Consequently,
I extend the model to allow for the pressure dependence of the host rock, thereby
physically interpreting the nonlinear behaviors of deformation. Furthermore, I apply
a discrete grid-search inversion scheme that generalizes the distribution of asperity
heights, thus accurately reproduces velocity profiles, significantly improves the fit and helps to visualize the distribution of asperities. I compare the analytic and numerical
asperity-deformation models with the existing physical model of elliptical ?pennyshape?
cracks with a pore-aspect-ratio (PAR) spectrum in terms of physical meaning
and data-fitting ability. The comparison results provide a link and demonstrate the
consistency between the use of the two physical models, making a better understanding
of the microstructure as well as the contact mechanism and physical behaviors of
rocks under pressure. ADM-based solutions, therefore, have the potential to facilitate
modeling and interpretation of applications such as time-lapse seismic investigations
of fractured reservoirs.
|
24 |
Molecular insights into the redox of atmospheric mercury through laser spectroscopyCohen, Rongrong Wu 09 December 2022 (has links) (PDF)
The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the reduction of Hg(I) to Hg(0) (R3). A different oxidation pathway of BrHg + O3 (R4) is currently regarded as the dominant Hg(II) oxidation pathway in the atmosphere. Hg + Br + M → BrHg + M (R1) BrHg + Y + M → BrHgY + M (R2) BrHg + Y → BrY +Hg (R3) BrHg + O3 → BrHgO + O2 (R4) While the rate constants of R1 have been experimentally measured a decade ago, this research focuses on the experimental kinetic studies on the reaction of R2-R4 to better assist the efforts to predict how emission reductions impact the spatial distribution of mercury entry into ecosystems. The kinetic studies of BrHg redox chemistry are conducted by utilizing laser photolysis-laser induced fluorescence-cavity ringdown spectroscopy (LP-LIF-CRDS) systems, where BrHg radicals are generated via laser photolysis and monitored in the reaction via LIF and CRDS measurements. We report mainly on our experimental kinetic studies of the redox reactions of BrHg with relatively abundant trace gases such as NO2, NO, O3, O2, and VOCs, especially on the temperature and pressure dependence of the reaction rate constants using our LP-LIF system. We present the development and the characterization of a novel LP-CRDS system, which is a powerful tool to study reactions during which fluorescence quenching interferes with LIF measurement, and to study the spectroscopy of Hg(I) and Hg(II) compounds.
|
25 |
Development and Characterization of Parallel-Plate Avalanche Counters for Nuclear Physics ExperimentsCarlsson, Matthias January 2018 (has links)
Parallel-plate avalanche counters, PPACs, are commonly used to detect fission fragments. The PPAC detects them and mark (very accurately) the time of detection. Such measurements can be used to measure the neutron energy (via time-of-flight) to study neutron-induced fission.This project report provides a method that, together with the discussed improvements, allows the fabrication of good quality PPAC detectors. Several PPACs are manufactured and the electrodes are built from 0.9 µm thick mylar foils which are evaporated with a 40-80 nm thin layer of aluminum.The developed PPACs are characterized with well known radioactive Cf and Am sources (the source characterization also found in this report), and compared against each other. Additionally, the PPAC signal amplitude spectrum are found to follow theoretical expectations with regards to angular dependence, gas pressure and an applied electrode voltage.At a specific applied electrode voltage and range of gas pressures (3-9 mbar), the measured time resolutions are 2.24-1.38 ns. A trend is observed for finer time resolutions at higher gas pressures. / Parallel-plate avalanche counters, PPACs, används ofta för att detektera fissionsfragment. PPAC:en detekterar fragmenten med väldigt god tidsupplösning och således kan PPAC detektorer användas till att mäta neutron energier (mha. flygtidsmetoden), vilka uppmätts för att studera neutroninducerad fission.Det här projektet och den här rapporten beskriver en metod, med föreslagna förbättringar, som möjliggör tillverkning av PPAC detektorer av bra kvalitet. Under projektet har flera PPACs byggts med elektroder gjorda av 0.9 µm tunn mylar förångade med 40-80 nm aluminium. De tillverkade PPAC detektorerna är karaktäriserade med väl kända radioaktiva Cf- och Am-källor (dessa karaktäriseras även i den här rapporten). Detektorerna är sedan jämförda mot varandra och är funna att följa teoretiska förväntningar med avseende på vinkel-, gastryck- och pålagd elektrodspänningsberoende.Resultaten av projektet, som besvarar flera tidigare frågeställningar och bekräftar vissa antaganden, flyttar utsikten och förståelsen framåt för hur PPACs fungerar och vad forskarna kan uppnå med dem.
|
Page generated in 0.1085 seconds