• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude du processus empirique de copule

Zari, Tarek 03 May 2010 (has links) (PDF)
Cette thèse traite des propriétés statistiques fines des processus empiriques de copules, éventuellement lissées, dans une optique d'approximations fortes. Lorsque les marges sont connues, nous avons établi une approximation forte du processus empirique bivarié de copules sur des pavés de [0,1]^2. Nous considérons ensuite un cadre plus général où la dimension d de la variable est supérieure à 2 et les marginales sont continues mais inconnues. Nous fournissons, par deux techniques différentes, des approximations fortes du processus empirique de copule par une suite de ponts Browniens attachés à paramètres, ou par une suite de processus de Kiefer attachés à (d+1)-paramètres. Ceci nous permettra d'obtenir des résultats asymptotiques pour le processus empirique de densité de copule, pour les statistiques de rang multivariées et pour le processus empirique de copule lissée ainsi que l'ordre de grandeur du module d'oscillation et la L.L.I du processus empirique de copule. Nous abordons le problème du test à deux échantillons; l'hypothèse nulle consiste en l'identité des deux copules sous-jacentes aux deux échantillons, simultanément avec l'hypothèse d'indépendance des marges. Deux hypothèses alternatives sont considérées, selon qu'on rejette la propriété d'indépendance. Nous proposons plusieurs statistiques de tests basées, essentiellement, sur les normes infinie ou L^2 de la différence entre les deux processus de copules empiriques sous-jacents (statistiques de type Kolmogorov-Smirnov et Cramer Von Mises). Sous l'hypothèse nulle, des bornes et vitesses de convergence presque sûres vers des processus gaussiens sont obtenues.
2

Principe d'invariance individuel pour une diffusion dans un environnement périodique. / Individualite invariance principle for diffusions in a periodic environment

Ba, Moustapha 08 July 2014 (has links)
Nous montrons ici, en utilisant les méthodes de l'analyse stochastique, le principe d'invariance pour des diffusion sur $\mathbb{R} ^{d},d\geq 2$, en milieu périodique au delà des hypothèses d'uniforme ellipticité et au delà des hypothèses de régularité sur le potentiel. La théorie du calcul stochastique pour les processus associés aux formes de Dirichlet est largement utilisée pour justifier l'existence du processus de Markov à temps continus, défini pour presque tout point de départ sur $\mathbb{R} ^{d}$. Pour la preuve du principe d'invariance, nous montrons une nouvelle inégalité de type Sobolev avec des poids différents, qui nous permet de déduire l'existence et la bornitude d'une densité de la probabilité de transition associée au processus de Markov. Cette inégalité, est l'outil principal de ce travail. La preuve fera appel à des techniques d'analyse harmonique. Enfin, le chapitre 3 contient le résultat principal du travail de la thèse : le principe d'invariance qui veut dire que la suite de processus $(_{\varepsilon }X_{t\varepsilon ^{-2}})$ converge en loi quand $\varepsilon$ tend vers zéro vers un mouvement Brownien. Notre stratégie suit quelques étapes classiques : nous nous appuyons sur la construction de ce qu'on appelle ici correcteur. Afin de contrôler le correcteur, et aussi pour montrer son existence, nous nous appuyons sur l'inégalité de Sobolev. Le resultat est obenu seulement avec les hypothèses, le potentiel $V$ est périodique et satisfait: $e^{V}+e^{-V}$ locallement dans $L^{1}\left( \mathbb{R} ^{d};dx\right)$ ou $dx$ est la mesure de Lebesgue. / We prove here, using stochastic analysis methods, the invariance principle for a $\mathbb{R} ^{d}$ diffusions $d\geq 2$, in a periodic potential beyond uniform boundedness assumptions of potential. The potential is not assumed to have any regularity. So the stochastic calculus theory for processes associated to Dirichlet forms is used to justify the existence of a continuous Markov process starting from almost all $x\in \mathbb{R} ^{d}$ and denoted by $\left( X_{t},t>0\right)$ (cf chapter 1). In chapter 2, we prove a new Sobolev inequality with different weights by using some materials in harmonic analysis. In chapter 3, we prove the main result (Theorem 1) of this work: the invariance principle. Our strategy for proving Theorem 1 follows some classical steps: we rely on the construction of the so-called corrector. In order to control the corrector, and actually also in order to show its existence, we rely on the Sobolev inequality. All the work is done under the following hypothesis: the potential $V$ is periodic and satisfies $e^{V}+e^{-V}$ are locally in $L^{1}\left( \mathbb{R} ^{d};dx\right)$ where $dx$ is the Lebesgue measure.
3

Contributions à l'étude de quelques fonctionnelles stochastiques

Breton, Jean-Christophe 26 June 2009 (has links) (PDF)
Ce mémoire est une présentation de contributions à l'étude de fonctionnelles stochastiques. Ces contributions comportent à la fois des analyses théoriques des lois des fonctionnelles (régularité, inégalités de déviation, théorèmes limites), et des études de modèles motivés par les applications (mathématiques financières, modèles de boules aléatoires). Le mémoire est organisé selon trois thèmes principaux que nous décrivons brièvement. Dans une première partie, les lois de différents types d'intégrales stochastiques (stable, Wiener-Itô, Poisson) sont étudiées. En considérant les intégrales comme des fonctionnelles sur l'espace des trajectoires de processus naturellement associés aux mesures aléatoires d'intégration, nous analysons la régularité des lois (existence de densité, convergence en variation par rapport aux fonctions intégrées). La deuxième partie est consacrée à des inégalités sur les lois de probabilités. Les premières sont des inégalités de concentration qu'on propose pour des fonctionnelles sur l'espace de Poisson lorsque le gradient (de type différence) satisfait certaines bornes. Nos résultats sont spécialisés pour de nombreuses classes de fonctionnelles (parmi lesquelles~: des vecteurs d'intégrales de Poisson, des fonctionnelles de Wiener quadratiques, des fonctionnelles stables). Les secondes sont des inégalités de comparaison convexe pour des exponentielles stochastiques ou des vecteurs à représentation prévisible. Des applications aux bornes de prix d'options financières sont également considérées. La troisième partie regroupe différents théorèmes limites pour différentes convergences et différents objets. Des convergences en variation sont obtenues pour des processus empiriques en renforçant des principes d'invariance, et pour les variations d'Hermite du mouvement brownien fractionnaire en obtenant des résultats de type Berry-Esséen. Dans des modèles de boules aléatoires et de mots aléatoires, ce sont des fluctuations en lois de fonctionnelles d'intérêt que nous analysons.
4

Comportement asymptotique des processus de Markov auto-similaires positifs et forêts de Lévy stables conditionnées.

Pardo Millan, Juan Carlos 09 July 2007 (has links) (PDF)
Les processus de Markov auto-similaires apparaissent souvent dans diverses parties de la théorie de probabilités comme limites de processus normalisés. La propriété de Markov ajoutée à l'auto-similarité fournit des propriétés très intéressantes comme l'avait remarqué Lamperti. La première partie de cette thèse est consacrée à l'étude de l'enveloppe inférieure et supérieure au moyen de test intégraux et de lois du logarithme itéré pour une classe suffisamment grandes des processus de Markov auto-similaires positifs et quelques processus associés, comme le minimum futur et le processus de Markov auto-similaire positif réflechi en son minimum futur. La seconde partie concernent à l'étude des forêt de Lévy stables conditionnés par leur taille et leur masse. En particulier, un principe d'invariance est établi pour la forêt de Galton-Watson conditionnée par leur taille et leur masse.
5

Théorèmes limites dans l'analyse statistique des systèmes dynamiques / Limit theorems in the statistical analysis of dynamical systems

Abdelkader, Mohamed 30 November 2017 (has links)
Dans cette thèse nous étudions les théorèmes limites dans l’analyse statistique dessystèmes dynamiques. Le premier chapitre est consacré aux notions des bases des systèmesdynamiques ainsi que la théorie ergodique. Dans le deuxième chapitre nous introduisonsun cadre fonctionnel abstrait pour lequel la version quenched du théorème de la limitecentrale (TLC) en dimension 1 pour les systèmes dynamiques uniformément dilatantsest satisfaite sous une condition de validité nécessaire et suffisante. Le troisième chapitreest consacré au principe d’invariance presque sûr (PIPS) pour les application aléatoiresdilatantes par morceaux. Nous présentons certaines hypothèses sous lesquelles le (PIPS)est vérifié en utilisant la méthode d’approximation des martingales de Cuny et Merlèvede.Nous étudions aussi le théorème de Sprindzuk et ses conséquences. Nous établissons dansle chapitre quatre la décroissance des corrélations pour les systèmes dynamiques aléatoiresuniformément dilatants par la méthode de couplage en dimension 1. Nous terminons cetravail par une présentation des concepts de base de la théorie des mesures et probabilitéset une présentation de l’espace des fonctions à variation bornée. / In this thesis we study the limit theorems in the statistical analysis of dynamicalsystems. The first chapter is devoted to the basic notions in dynamical systems as well asthe ergodic theory. In the second chapter we introduce an abstract functional frameworkunder which the quenched version of the central limit theorem (CLT) in dimension 1for uniformly expanding dynamic systems is satisfied under a necessary and sufficientcondition validity. The third chapter is devoted to the almost sure invariance principle(ASIP) for random piecewise expanding maps. We present some hypotheses under whichthe (ASIP) is verified using the method of approximation of the martingales of Cuny andMerlèvede. We also study the Sprindzuk theorem and its consequences. In chapter four,we define the decay of correlations for the random dynamical systems uniformly expandingby the coupling method in dimension 1. We finish this work with a presentation of thebasic concepts of the theory of measures and probabilities and a presentation of the spaceof functions with bounded variation.
6

Comportements Asymptotiques des Processus Stationnaires et des Processus Empiriques dans des Systèmes Dynamiques

Durieu, Olivier 01 December 2008 (has links) (PDF)
Cette thèse se consacre à l'étude de théorèmes limites pour des suites de variables aléatoires stationnaires (en particulier issues d'un système dynamique). Nous nous concentrons sur deux résultats importants, notamment par leurs applications en statistiques. Nous étudions tout d'abord le comportement limite des sommes de variables aléatoires, plus précisément le théorème limite central et son principe d'invariance. Ensuite nous considérons le principe d'invariance pour les processus empiriques.<br />Dans le cadre du principe d'invariance faible de Donsker, plusieurs résultats s'obtiennent au travers d'approximations par des martingales et plus généralement par des critères projectifs. Nous comparons quatre de ces critères et montrons leur indépendance mutuelle. Les critères étudiés sont la décomposition martingale-cobord (Gordin, 1969), la condition de Hannan (1979), le critère de Dedecker et Rio (2000) et<br />la condition de Maxwell et Woodroofe (2000).<br />En ce qui concerne le comportement asymptotique des processus empiriques, nous établissons un principe d'invariance dans le cas des automorphismes du tore. Cela permet de sortir du cadre hyperbolique connu et d'obtenir un premier résultat pour une transformation partiellement hyperbolique.<br />Nous proposons également une nouvelle approche, basée sur des méthodes d'opérateurs, permettant d'établir un principe d'invariance empirique. Cette méthode s'applique en particulier aux cas où l'on a de bonnes propriétés pour une classe de fonctions ne contenant pas les fonctions indicatrices. C'est en particulier le cas de certains systèmes dynamiques dont l'opérateur de transfert admet un trou spectral.<br />En dernier lieu, suivant une question de Burton et Denker (1987), nous nous intéressons à la classe des processus pour lesquels le théorème limite central a lieu. En référence au cadre des processus empiriques, nous étudions en particulier les suites de sommes partielles des itérées d'une fonction indicatrice.
7

Application des représentations diffusives à temps discret

Dauphin, Gabriel 20 December 2001 (has links) (PDF)
Ce travail s'inscrit dans une thématique de recherche sur l'étude des opérateurs pseudo-différentiels sous représentations diffusives ; l'intégration fractionnaire est un exemple devenu classique d'opérateurs diffusifs.<br />Le première partie consiste en la mise en place des représentations diffusives à temps discret. Certains filtres non-relationnels, notamment les différences frationnaires, sont une agrégation continue de dynamiques purement amorties. Les représentations diffusives s'appliquent à toutes les discrétisations de l'intégration fractionnaire y compris celles pour lesquelles la fonction de transfert n'est pas connue analytiquement. Les filtres diffusifs peuvent être réalisés par un système de dimension infinie. Cette structure est un cadre adapté à l'approximation par un filtre relationnel, à l'analyse asymptotique aux temps longs et à l'élaboration d'un critère de dissipativité.<br />La deuxième partie consiste à appliquer ces outils pour l'étude des couplages formés de filtres diffusifs et de filtres rationnels positifs. L'application d'un critère de Nyquist prouve la stabilité énergétique. Ces couplages sont en fait la somme d'une partie entière et d'une partie diffusive, ce résultat de décomposition montre que certains couplages sont stables EBSB (entrée-bornée, sortie-bornée). La dissipativité de la réalisation diffusive ainsi que le lemme de Kalman-Yacubovich-Popov montrent notamment la stabilité interne de ces couplages ; une démonstration originale du caractère asymptotique de la stabilité interne est ainsi proposée. Les approches utilisées pour prouver ces stabiblités permettent une analyse asymptotique aux temps longs.
8

Theoremes limite pour les champs et les suites stationnaires de variables aleatoires reelles

EL MACHKOURI, Mohamed 19 December 2002 (has links) (PDF)
Cette thèse est essentiellement consacrée au comportement asymptotique de champs et de suites stationnaires de variables aléatoires réelles. Dans le premier chapitre, nous mettons en évidence que le principe d'invariance de Dedecker (2001) pour des processus de sommes partielles issus d'un champ stationnaire $(X_{i})_{i\in\Z^{d}}$ de variables aléatoires réelles bornées et indexés par les ensembles d'une classe $\A$ n'a plus nécessairement lieu si on considère des champs de variables aléatoires qui sont seulement $p$-intégrables ($0
9

Invariance organisationnelle et conscience artificielle

Brodeur, Julien 08 1900 (has links)
Ce mémoire se penche sur la possibilité de la conscience artificielle. Plus spécifiquement, je me demande s’il est possible qu’un robot, un ordinateur ou toute autre machine ait une conscience phénoménale, i.e. qu’il y ait un effet que cela fait que d’être ces systèmes. Après avoir brièvement caractérisé la conscience phénoménale, j’investiguerai quelques problèmes qui sont propres à la conscience, soit le problème difficile de la conscience ainsi que le problème des autres esprits, dans le but d’établir le cadre conceptuel qui nous permettra de réfléchir quant à la possibilité de la conscience artificielle. Dans le deuxième chapitre, je défendrai la thèse selon laquelle la conscience artificielle est possible en m’appuyant notamment sur le principe d’invariance organisationnelle défendu, entre autres, par David Chalmers, ainsi que sur la théorie computationnelle de l’esprit. Finalement, dans le troisième et dernier chapitre, j’évaluerai diverses objections contre la possibilité de la conscience artificielle que je tenterai tour à tour de réfuter dans le but maintenir ma thèse initiale aussi intacte que possible. / This thesis examines the possibility of artificial consciousness. More specifically, I consider the possibility for a robot, computer or any other machine to have phenomenal consciousness, i.e. that there is something it is like to be those systems. After having briefly characterized phenomenal consciousness, I will investigate some problems that are specific to consciousness, namely the hard problem of consciousness as well as the problem of other minds, in order to establish the conceptual framework that will allow us to reflect upon the possibility of artificial consciousness. In the second chapter, I will defend the thesis that artificial consciousness is possible by relying on the principle of organizational invariance which is defended by David Chalmers, among others, as well as on the computational theory of the mind. Finally, in the third and last chapter, I will assess various objections against the possibility of artificial consciousness which I will try to refute in turn in order to keep my initial thesis as intact as possible.

Page generated in 0.4313 seconds