• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Assessment of Retroviruses as Potential Vectors for the Cell Delivery of Prions

Rahimi Khameneh, Shabnam 31 October 2012 (has links)
Transmissible spongiform encephalopathies (TSEs) or prion diseases are a class of fatal brain disorders better known as Creutzfeldt-Jacob Disease (CJD) in humans, bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, and chronic wasting disease (CWD) in deer and elk. The infectious agent responsible for these diseases is a misfolded prion protein capable of catalyzing a conformational change in normal cellular prion proteins (PrPC) into aberrant disease-causing structural isoforms (PrPSc). Although the etiological agent for TSEs has clearly been defined as PrPSc, there are important gaps in our understanding of how these proteins target and invade brain tissue. It remains to be established how ingested PrPSc ultimately reach the brain and also to understand why these tissues are particularly targeted, notwithstanding that several other tissues highly express prion proteins. Certain viruses, retroviruses in particular, efficiently hijack host proteins and can carry these proteins with them when they are released from a cell. Several lines of evidence have shown that prions and retroviruses can interact and associate at various stages of the retroviral replication cycle. Of special interest is that most retroviruses can cross the blood-brain barrier and could therefore deliver host-derived proteins to neuronal cells. In view of these observations, this thesis investigates whether retroviruses can act as vectors to capture prions from an infected cell and deliver them to a susceptible target cell. In this work, I have cloned human and mouse prion cDNAs from PBMCs and the murine cell line NIH 3T3. Either a FLAG epitope tag or the eGFP reporter protein cDNA was inserted into a region of the prion cDNA that is predicted to be amenable to such genetic insertions without affecting protein folding or expression. I then confirmed using both fluorescent and confocal microscopy and that the recombinant proteins had a similar cell distribution to the endogenous prion protein. Using Western blot analysis, I then showed that endogenous and overexpressed prion proteins can be detected in co-transfected cells producing HIV and murine leukemia virus (MLV) retroviral particles. Finally, I went on to show that prions are also present at high levels in HIV and MLV retroviral particles released from these cells. This work constitutes the first step in determining whether retroviruses can act as vectors for prion dissemination. Establishing a strong and clear association between retroviruses, pathogenic prions and prion disease would provide the rationale for preventive measures to be taken directly against retroviruses in order to protect humans and animals that have been newly exposed to PrPSc-infected products or those who are genetically predisposed to develop prion diseases. Anti-retroviral drugs could also be potentially used to delay disease progression and reduce prion transmission in human and animal tissues. The availability of such a treatment would constitute a significant advancement because there is currently no cure or treatment for prion diseases.
22

Assessment of Retroviruses as Potential Vectors for the Cell Delivery of Prions

Rahimi Khameneh, Shabnam January 2012 (has links)
Transmissible spongiform encephalopathies (TSEs) or prion diseases are a class of fatal brain disorders better known as Creutzfeldt-Jacob Disease (CJD) in humans, bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, and chronic wasting disease (CWD) in deer and elk. The infectious agent responsible for these diseases is a misfolded prion protein capable of catalyzing a conformational change in normal cellular prion proteins (PrPC) into aberrant disease-causing structural isoforms (PrPSc). Although the etiological agent for TSEs has clearly been defined as PrPSc, there are important gaps in our understanding of how these proteins target and invade brain tissue. It remains to be established how ingested PrPSc ultimately reach the brain and also to understand why these tissues are particularly targeted, notwithstanding that several other tissues highly express prion proteins. Certain viruses, retroviruses in particular, efficiently hijack host proteins and can carry these proteins with them when they are released from a cell. Several lines of evidence have shown that prions and retroviruses can interact and associate at various stages of the retroviral replication cycle. Of special interest is that most retroviruses can cross the blood-brain barrier and could therefore deliver host-derived proteins to neuronal cells. In view of these observations, this thesis investigates whether retroviruses can act as vectors to capture prions from an infected cell and deliver them to a susceptible target cell. In this work, I have cloned human and mouse prion cDNAs from PBMCs and the murine cell line NIH 3T3. Either a FLAG epitope tag or the eGFP reporter protein cDNA was inserted into a region of the prion cDNA that is predicted to be amenable to such genetic insertions without affecting protein folding or expression. I then confirmed using both fluorescent and confocal microscopy and that the recombinant proteins had a similar cell distribution to the endogenous prion protein. Using Western blot analysis, I then showed that endogenous and overexpressed prion proteins can be detected in co-transfected cells producing HIV and murine leukemia virus (MLV) retroviral particles. Finally, I went on to show that prions are also present at high levels in HIV and MLV retroviral particles released from these cells. This work constitutes the first step in determining whether retroviruses can act as vectors for prion dissemination. Establishing a strong and clear association between retroviruses, pathogenic prions and prion disease would provide the rationale for preventive measures to be taken directly against retroviruses in order to protect humans and animals that have been newly exposed to PrPSc-infected products or those who are genetically predisposed to develop prion diseases. Anti-retroviral drugs could also be potentially used to delay disease progression and reduce prion transmission in human and animal tissues. The availability of such a treatment would constitute a significant advancement because there is currently no cure or treatment for prion diseases.
23

Podmínky propagace prionu v tkáňových kulturách / Conditions of prion propagation in cell cultures

Hobzová, Kristýna January 2011 (has links)
Prion diseases are fatal neurodegenerative diseases that affect mammals, including humans, which are characterized by accumulation of pathologi- cal prion protein isoform (PrPTSE ) in the brain. The animals were commonly used for the prion disease research in the past but in recent years, the tissue cultures are being used as well. Tissue cultures have many advantages com- pared with animals. E.g. the possibility of a detailed study of the biochemical processes associated with prion diseases, and rapid and sensitive PrPTSE de- tecting method. However no reliable in vitro model was developed for human prion diseases so far. We focused on monitoring of transmission and propagation efficiency of different prion strains and on the influence of cultivation conditions on the transfer of the neuronal cell line CAD5, which is highly sensitive to prion infection. We confirmed the sensitivity of CAD5 cells to mouse-adapted scra- pie prion strains and we presented new facts about their ability to propagate mouse adapted prions of human strains and bovine spongiform encepha- lopathy. We have used CAD5 cell sensitivity to be infected with different prion strains in other parts of this work. In the second part, we focused on the cell sensitivity to prion infection and propagation of prion strains under different culture...
24

Loss of Perineuronal Net in ME7 Prion Disease

Franklin, S.L., Love, S., Greene, J.R., Betmouni, S. January 2008 (has links)
Microglial activation and behavioral abnormalities occur before neuronal loss in experimental murine prion disease; the behavioral changes coincide with a reduction in synaptic plasticity. Because synaptic plasticity depends on an intact perineuronal net (PN), a specialized extracellular matrix that surrounds parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acid [GABA]) inhibitory interneurons, we investigated the temporal relationships between microglial activation and loss of PN and PV-positive neurons in ME7 murine prion disease. Anesthetized C57Bl/6J mice received bilateral intracerebral microinjections of ME7-infected or normal brain homogenate into the dorsal hippocampus. Microglial activation, PrP accumulation, the number of PV-positive interneurons, and Wisteria floribunda agglutinin-positive neurons (i.e. those with an intact PN) were assessed in the ventral CA1 and subiculum at 4, 8, 12, 16, and 20 weeks postinjection. Hippocampal areas and total neuron numbers in the ventral CA1 and subiculum were also determined. Loss of PN coincided with early microglial activation and with a reduction in synaptic plasticity. No significant loss of PV-positive interneurons was observed. Our findings suggest that the substrate of the earliest synaptic and behavioral abnormalities in murine prion disease may be inflammatory microglia-mediated degradation of the PN.
25

Genetic variation in humans and chimpanzees in the prion protein gene

Soldevila Trepat, Marta 20 June 2005 (has links)
En el gen de la proteïna priònica, o PRNP, hem observat que el particular patró de variació que hem trobat basant-nos en dades de seqüenciació en humans es deu a selecció positiva, i que el mètode utilitzat per detectar selecció és crític. Utilitzant dades basades en SNPs es pot introduir un biaix al aplicar tests de neutralitat basats en diversitat de seqüències, i això pot portar a conclusions errònies. A més, hem vist que els polimorfismes en els codons 129 i 219 presenten gran diferències de freqüència en diferents poblacions humanes i també hem vist que aquestes posicions estan fixades en ximpanzés. La variació trobada en controls ha estat comparada amb el patró de variació existent en pacients per la mateixa regió. La reseqüenciació del gen PRNP en un gran nombre de mostres humanes i de ximpanzés ens ha permès obtenir un gran nombre d´informació d´aquest gen. / In the prion gene or PRNP, we have observed that the particular pattern of variation that we have found in this gene based on sequencing data in humans is due to positive selection, and that the method and the approach used to detect this selection critical. Ascertainment bias can be introduced by using SNP data and applying neutrality tests based on sequence diversity, therefore leading to anomalous conclusions being drawn. Moreover, we have seen that polymorphisms in codon 129 and 219 have big differences in frequency in different human populations and we have also seen that these positions are fixed in chimpanzees. The normal variation that we found in controls have been then compared with patients for the same region. The resequencing of PRNP in a very large sample of humans and chimpanzees has provided a great deal of information on this gene.

Page generated in 0.0952 seconds