• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 20
  • 1
  • Tagged with
  • 43
  • 43
  • 24
  • 15
  • 13
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Processus d'exploration des arbres aléatoires en temps continu à branchement non binaire : limite en grande population / Convergence of the exploration process of the non-binary tree associated to a continuous time branching process, in the limit of a large population

Dramé, Ibrahima 22 May 2017 (has links)
Dans cette thèse, on étudie la convergence du processus d'exploration de l'arbre généalogique d'un processus de branchement en temps continu non binaire, dans la limite d'une grande population. Dans la première partie, nous donnons une description précise du processus d'exploration de l'arbre non binaire. Ensuite nous décrivons une certaine bijection entre l'ensemble des processus d'exploration et l'ensemble des arbres non binaires. Après renormalisation des paramètres, nous présentons les résultats de convergence du processus de population et du processus d'exploration dans la limite d'une grande population. Dans la deuxième partie, nous établissons d'abord la convergence du processus de population vers un processus de branchement à espace d'état continu avec sauts. Puis, nous montrons la convergence du processus d'exploration normalisé de l'arbre généalogique correspondant vers le processus de hauteur continu défini récemment par Li, Pardoux et Wakolbinger.Dans la dernière partie, on définit un modèle discret de population avec interaction définie par une fonction générale non linéaire f. On fait une renormalisation adéquate du modèle discret pour obtenir en limite un processus de branchement à espace d'état continu généralisé. Ensuite nous renormalisons le processus d'exploration de l'arbre généalogique associé et nous prenons la limite quand la taille de la population tend vers l'infini. / In this thesis, we study the convergence of the exploration process of the non-binary tree associated to a continuous time branching process, in the limit of a large population. In the first part, we give a precise description of the exploration process of the non-binary tree. We then describe a bijection between exploration processes and Galton Watson non-binary trees. After some renormalization, we present the results of convergence of the population process and the exploration process, in the limit of a large populations.In the second part, we first establish the convergence of the population process to a continuous state branching process (CSBP) with jumps. We then show the convergence of the (rescaled) exploration process, of the corresponding genealogical tree towards the continuous height process recently defined by Li, Pardoux and Wakolbinger. In the last part, we consider a population model with interaction defined with a more general non linear function $f.$ We proceed to a renormalization of the parameters model and we obtain in limit a generalized CSBP. We then renormalize the height process of the associated genealogical tree, and take the weak limit as the size of the population tends to infinity.
12

Persistance et vitesse d'extinction pour des modèles de populations stochastiques multitypes en temps discret. / Persistence and extinction rate for multitype stochastic model in discrete time.

Adam, Etienne 01 July 2016 (has links)
Cette thèse porte sur l'étude mathématique de modèles stochastiques de dynamique de populations structurées.Dans le premier chapitre, nous introduisons un modèle stochastique à temps discret prenant en compte les diverses interactions possibles entre les individus, que ce soit de la compétition, de la migration, des mutations, ou bien de la prédation. Nous montrons d'abord un résultat de type ``loi des grands nombres'', où on montre que si la population initiale tend vers l'infini, alors sur un intervalle de temps fini, le processus stochastique converge en probabilité vers un processus déterministe sous-jacent. Nous quantifions aussi les écarts entre ces deux processus par un résultat de type ``théorème central limite''. Enfin, nous donnons un critère de persistance/extinction afin de déterminer le comportement en temps long de notre processus stochastique. Ce critère met en exergue un cas critique qui sera étudié plus en détail dans les chapitres suivants.Dans le deuxième chapitre, nous donnons un critère de croissance illimitée pour des processus vérifiant le cas critique évoqué plus haut. Nous illustrons en particulier ce critère avec l'exemple d'une métapopulation constituée de parcelles de type puits (c'est à dire dont la population s'éteint sans tenir compte de la migration), où l'on montre que la survie de la population est possible.Dans le troisième chapitre, nous nous intéressons au comportement du processus critique lorsqu'il croît vers l'infini. Nous montrons en particulier une convergence en loi vers une loi gamma de notre processus renormalisé et dans un cadre plus général, en renormalisant aussi en temps, nous obtenons une convergence en loi d'une fonction de notre processus vers la solution d'une équation différentielle stochastique appelée un processus de Bessel carré.Dans le quatrième et dernier chapitre, nous nous plac{c}ons dans le cas où le processus critique ne tend pas vers l'infini et étudions le temps d'atteinte de certains ensembles compacts. Nous donnons un encadrement asymptotique de la queue de ce temps d'atteinte. Lorsque le processus s'éteint, ces résultats nous permettent en particulier d'encadrer la queue du temps d'extinction. Dans le cas où notre processus est une chaîne de Markov, nous en déduisons un critère de récurrence nulle ou récurrence positive et dans ce cas, nous obtenons un taux de convergence sous-géométrique du noyau de transition de notre chaîne vers sa mesure de probabilité invariante. / This thesis is devoted to the mathematical study of stochastic modelds of structured populations dynamics.In the first chapter, we introduce a discrete time stochastic process taking into account various ecological interactions between individuals, such as competition, migration, mutation, or predation. We first prove a ``law of large numbers'': where we show that if the initial population tends to infinity, then, on any finite interval of time, the stochastic process converges in probability to an underlying deterministic process. We also quantify the discrepancy between these two processes by a kind of ``central limit theorem''. Finally, we give a criterion of persistence/extinction in order to determine the long time behavior of the process. This criterion highlights a critical case which will be studied in more detail in the following chapters.In the second chapter, we give a criterion for the possible unlimited growth in the critical case mentioned above. We apply this criterion to the example of a source-sink metapopulation with two patches of type source, textit{i.e.} the population of each patch goes to extinction if we do not take into account the migration. We prove that there is a possible survival of the metapopulation.In the third chapter, we focus on the behavior of our critical process when it tends to infinity. We prove a convergence in distribution of the scaled process to a gamma distribution, and in a more general framework, by also rescaling time, we obtain a distribution limit of a function of our process to the solution of a stochastic differential equation called a squared Bessel process.In the fourth and last chapter, we study hitting times of some compact sets when our process does not tend to infinity. We give nearly optimal bounds for the tail of these hitting times. If the process goes to extinction almost surely, we deduce from these bounds precise estimates of the tail of the extinction time. Moreover, if the process is a Markov chain, we give a criterion of null recurrence or positive recurrence and in the latter case, we obtain a subgeometric convergence of its transition kernel to its invariant probability measure.
13

Conditional limit theorems for multitype branching processes and illustration in epidemiological risk analysis

Pénisson, Sophie 16 July 2010 (has links) (PDF)
Cette thèse s'articule autour de la problématique de l'extinction de populations comportant différents types d'individus, et plus particulièrement de leur comportement avant extinction et/ou en cas d'une extinction très tardive. Nous étudions cette question d'un point de vue strictement probabiliste, puis du point de vue de l'analyse des risques liés à l'extinction pour un modèle particulier de dynamique de population, et proposons plusieurs outils statistiques. La taille de la population est modélisée soit par un processus de branchement de type Bienaymé-Galton-Watson à temps continu multitype (BGWc), soit par son équivalent dans un espace de valeurs continu, le processus de diffusion de Feller multitype. Nous nous intéressons à différents types de conditionnement à la non-extinction, et aux états d'équilibre associés. Ces conditionnements ont déjà été largement étudiés dans le cas monotype. Cependant la littérature relative aux processus multitypes est beaucoup moins riche, et il n'existe pas de travail systématique établissant des connexions entre les résultats concernant les processus BGWc et ceux concernant les processus de diffusion de Feller. Nous nous y sommes attelés. Dans la première partie de cette thèse, nous nous intéressons au comportement de la population avant son extinction, en conditionnant le processus de branchement X_t à la non-extinction (X_t≠0), ou plus généralement à la non-extinction dans un futur proche 0≤θ<∞ (X_{t+θ}≠0), et en faisant tendre t vers l'infini. Nous prouvons le résultat, nouveau dans le cadre multitype et pour θ>0, que cette limite existe et est non-dégénérée, traduisant ainsi un comportement stationnaire pour la dynamique de la population conditionnée à la non-extinction, et offrant une généralisation de la limite dite de Yaglom (correspondant au cas θ=0). Nous étudions dans un second temps le comportement de la population en cas d'une extinction très tardive, obtenu comme limite lorsque θ tends vers l'infini du processus X_t conditionné par X_{t+θ}≠0. Le processus conditionné ainsi obtenu est un objet connu dans le cadre monotype (parfois dénommé Q-processus), et a également été étudié lorsque le processus X_t est un processus de diffusion de Feller multitype. Nous examinons le cas encore non considéré où X_t est un BGWc multitype, prouvons l'existence du Q-processus associé, examinons ses propriétés, notamment asymptotiques, et en proposons plusieurs interprétations. Enfin, nous nous intéressons aux échanges de limites en t et en θ, ainsi qu'à la commutativité encore non étudiée de ces limites vis-à-vis de la relation de type grande densité reliant processus BGWc et processus de Feller. Nous prouvons ainsi une liste exhaustive et originale de tous les échanges de limites possibles (limite en temps t, retard de l'extinction θ, limite de diffusion). La deuxième partie de ce travail est consacrée à l'analyse des risques liés à l'extinction d'une population et à son extinction tardive. Nous considérons un certain modèle de population branchante (apparaissant notamment dans un contexte épidémiologique) pour lequel un paramètre lié aux premiers moments de la loi de reproduction est inconnu, et construisons plusieurs estimateurs adaptés à différentes phases de l'évolution de la population (phase de croissance, phase de décroissance, phase de décroissance lorsque l'extinction est supposée tardive), prouvant de plus leurs propriétés asymptotiques (consistance, normalité). En particulier, nous construisons un estimateur des moindres carrés adapté au Q-processus, permettant ainsi une prédiction de l'évolution de la population dans le meilleur ou le pire des cas (selon que la population est menacée ou au contraire invasive), à savoir celui d'une extinction tardive. Ces outils nous permettent d'étudier la phase d'extinction de l'épidémie d'Encéphalopathie Spongiforme Bovine en Grande-Bretagne, pour laquelle nous estimons le paramètre d'infection correspondant à une possible source d'infection horizontale persistant après la suppression en 1988 de la voie principale d'infection (farines animales). Cela nous permet de prédire l'évolution de la propagation de la maladie, notamment l'année d'extinction, le nombre de cas à venir et le nombre d'animaux infectés, et en particulier de produire une analyse très fine de l'évolution de l'épidémie dans le cas peu probable d'une extinction très tardive.
14

Processus de branchements non Markoviens en dynamique et génétique des populations / Non-Markovian branching processes in population dynamics and population genetics

Henry, Benoit 17 November 2016 (has links)
Dans cette thèse nous considérons une population branchante générale où les individus vivent et se reproduisent de manière i.i.d. La durée de vie de chaque individu est distribuée suivant une mesure de probabilité arbitraire et chacun d'eux donne naissance à taux exponentiel. L'arbre décrivant la dynamique de cette population est connu sous le nom de splitting tree. Le processus comptant le nombre d’individus vivant au temps t est connu sous le nom de processus de Crump-Mode-Jagers binaire homogène, et il est connu que ce processus, quand correctement renormalisé, converge presque sûrement en temps long vers une variable aléatoire. Grâce à l'étude du splitting tree sous-jacent à la population via les outils introduit par A. Lambert en 2010, nous montrons un théorème central limite pour cette convergence p.s. dans le cas surcritique. Nous supposons, de plus, que les individus subissent des mutations à taux exponentiel sous l'hypothèse d'infinité d'allèles. Nous nous intéressons alors au spectre de fréquence allélique de la population qui compte la fréquence des tailles de familles dans la population à un instant donnée. Grâce aux méthodes développées dans cette thèse, nous obtenons des résultats d’approximations du spectre de Fréquence. Enfin nous nous intéressons à des questions statistiques sur des arbres de Galton-Watson conditionnés par leurs tailles. Le but est d'estimer la variance de la loi de naissance rendue inaccessible par le conditionnement. On utilise le fait que le processus de contour d'un tel arbre converge vers une excursion Brownienne quand la taille de l'arbre grandit afin de construire des estimateurs de la variance à partir de forêts / In this thesis we consider a general branching population. The lifetimes of the individuals are supposed to be i.i.d. random variables distributed according to an arbitrary distribution. Moreover, each individual gives birth to new individuals at Poisson rate independently from the other individuals. The tree underlying the dynamics of this population is called a splitting tree. The process which count the number of alive individuals at given times is known as binary homogeneous Crump-Mode-Jagers processes. Such processes are known, when properly renormalized, to converge almost surely to some random variable. Thanks to the study of the underlying splitting tree through the tools introduced by A. Lambert in 2010, we show a central limit theorem associated to this a.s. convergence. Moreover, we suppose that individuals undergo mutation at Poisson rate under the infinitely many alleles assumption. We are mainly interested in the so called allelic frequency spectrum which describes the frequency of sizes of families (i.e. sets of individuals carrying the same type) at fixed times. Thanks to the methods developedin this thesis, we are able to get approximation results for the frequency spectrum. In a last part, we study some statistical problems for size constrained Galton-Watson trees. Our goal is to estimate the variance of the birth distribution. Using that the contour process of such tree converges to a Brownian excursion as the size of the tree growth, we construct estimators of the variance of the birth distribution
15

Modèles probabilistes de populations : branchement avec catastrophes et signature génétique de la sélection / Probabilistic population models : branching with catastrophes and genetic signature of selection

Smadi, Charline 05 March 2015 (has links)
Cette thèse porte sur l'étude probabiliste des réponses démographique et génétique de populations à certains événements ponctuels. Dans une première partie, nous étudions l'impact de catastrophes tuant une fraction de la population et survenant de manière répétée, sur le comportement en temps long d'une population modélisée par un processus de branchement. Dans un premier temps nous construisons une nouvelle classe de processus, les processus de branchement à états continus avec catastrophes, en les réalisant comme l'unique solution forte d'une équation différentielle stochastique. Nous déterminons ensuite les conditions d'extinction de la population. Enfin, dans les cas d'absorption presque sûre nous calculons la vitesse d'absorption asymptotique du processus. Ce dernier résultat a une application directe à la détermination du nombre de cellules infectées dans un modèle d'infection de cellules par des parasites. En effet, la quantité de parasites dans une lignée cellulaire suit dans ce modèle un processus de branchement, et les "catastrophes" surviennent lorsque la quantité de parasites est partagée entre les deux cellules filles lors des divisions cellulaires. Dans une seconde partie, nous nous intéressons à la signature génétique laissée par un balayage sélectif. Le matériel génétique d'un individu détermine (pour une grande partie) son phénotype et en particulier certains traits quantitatifs comme les taux de naissance et de mort intrinsèque, ou sa capacité d'interaction avec les autres individus. Mais son génotype seul ne détermine pas son ``adaptation'' dans le milieu dans lequel il vit : l'espérance de vie d'un humain par exemple est très dépendante de l'environnement dans lequel il vit (accès à l'eau potable, à des infrastructures médicales,...). L'approche éco-évolutive cherche à prendre en compte l'environnement en modélisant les interactions entre les individus. Lorsqu'une mutation ou une modification de l'environnement survient, des allèles peuvent envahir la population au détriment des autres allèles : c'est le phénomène de balayage sélectif. Ces événements évolutifs laissent des traces dans la diversité neutre au voisinage du locus auquel l'allèle s'est fixé. En effet ce dernier ``emmène'' avec lui des allèles qui se trouvent sur les loci physiquement liés au locus sous sélection. La seule possibilité pour un locus de ne pas être ``emmené'' est l'occurence d'une recombination génétique, qui l'associe à un autre haplotype dans la population. Nous quantifions la signature laissée par un tel balayage sélectif sur la diversité neutre. Nous nous concentrons dans un premier temps sur la variation des proportions neutres dans les loci voisins du locus sous sélection sous différents scénarios de balayages. Nous montrons que ces différents scenari évolutifs laissent des traces bien distinctes sur la diversité neutre, qui peuvent permettre de les discriminer. Dans un deuxième temps, nous nous intéressons aux généalogies jointes de deux loci neutres au voisinage du locus sous sélection. Cela nous permet en particulier de quantifier des statistiques attendues sous certains scenari de sélection, qui sont utilisées à l'heure actuelle pour détecter des événements de sélection dans l'histoire évolutive de populations à partir de données génétiques actuelles. Dans ces travaux, la population évolue suivant un processus de naissance et mort multitype avec compétition. Si un tel modèle est plus réaliste que les processus de branchement, la non-linéarité introduite par les compétitions entre individus en rend l'étude plus complexe / This thesis is devoted to the probabilistic study of demographic and genetical responses of a population to some point wise events. In a first part, we are interested in the effect of random catastrophes, which kill a fraction of the population and occur repeatedly, in populations modeled by branching processes. First we construct a new class of processes, the continuous state branching processes with catastrophes, as the unique strong solution of a stochastic differential equation. Then we describe the conditions for the population extinction. Finally, in the case of almost sure absorption, we state the asymptotical rate of absorption. This last result has a direct application to the determination of the number of infected cells in a model of cell infection by parasites. Indeed, the parasite population size in a lineage follows in this model a branching process, and catastrophes correspond to the sharing of the parasites between the two daughter cells when a division occurs. In a second part, we focus on the genetic signature of selective sweeps. The genetic material of an individual (mostly) determines its phenotype and in particular some quantitative traits, as birth and intrinsic death rates, and interactions with others individuals. But genotype is not sufficient to determine "adaptation" in a given environment: for example the life expectancy of a human being is very dependent on his environment (access to drinking water, to medical infrastructures,...). The eco-evolutive approach aims at taking into account the environment by modeling interactions between individuals. When a mutation or an environmental modification occurs, some alleles can invade the population to the detriment of other alleles: this phenomenon is called a selective sweep and leaves signatures in the neutral diversity in the vicinity of the locus where the allele fixates. Indeed, this latter "hitchhiking” alleles situated on loci linked to the selected locus. The only possibility for an allele to escape this "hitchhiking" is the occurrence of a genetical recombination, which associates it to another haplotype in the population. We quantify the signature left by such a selective sweep on the neutral diversity. We first focus on neutral proportion variation in loci partially linked with the selected locus, under different scenari of selective sweeps. We prove that these different scenari leave distinct signatures on neutral diversity, which can allow to discriminate them. Then we focus on the linked genealogies of two neutral alleles situated in the vicinity of the selected locus. In particular, we quantify some statistics under different scenari of selective sweeps, which are currently used to detect recent selective events in current population genetic data. In these works the population evolves as a multitype birth and death process with competition. If such a model is more realistic than branching processes, the non-linearity caused by competitions makes its study more complex
16

Quelques développements récents en théorie des fragmentations.

Krell, Nathalie 30 June 2008 (has links) (PDF)
Le sujet principal de cette thèse de doctorat est l'étude de diverses quantités reliées aux processus de fragmentation. Ces processus sont destinés à modéliser un objet de masse unité se fragmentant au cours du temps.<br />Ce travail comporte quatre chapitres. Le premier chapitre est consacré à l'étude de la dimension de Hausdorff de l'ensemble des points ayant une décroissance exponentielle dans une fragmentation homogène en intervalles. Dans le deuxième chapitre, on construit un processus de Markov auto-similaire qui généralise les fragmentations classiques autorisant en particulier la taille des descendants à être plus grande que celle de leurs parents. On établit ensuite certains théorèmes limites en utilisant la théorie des processus auto-similaires. Dans le troisième chapitre, on s'intéresse à un problème statistique provenant de l'industrie minière avec l'estimation statistique de la mesure de Lévy du subordinateur classiquement associé à la fragmentation. Plus précisément, on observe les fragments seulement à l'instant où ils atteignent une taille inférieure à un seuil fixé. Enfin, dans un quatrième chapitre on étudie le coût énergétique d'une succession de fragmentations.
17

Analyse probabiliste, étude combinatoire et estimation paramétrique pour une classe de modèles de croissance de plantes avec développement stochastique

Loi, Cédric 31 May 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à une classe particulière de modèles stochastique de croissance de plantes structure-fonction à laquelle appartient le modèle GreenLab. L'objectif est double. En premier lieu, il s'agit d'étudier les processus stochastiques sous-jacents à l'organogenèse. Un nouveau cadre de travail combinatoire reposant sur l'utilisation de grammaires formelles a été établi dans le but d'étudier la distribution des nombres d'organes ou plus généralement des motifs dans la structure des plantes. Ce travail a abouti à la mise en place d'une méthode symbolique permettant le calcul de distributions associées à l'occurrence de mots dans des textes générés aléatoirement par des L-systèmes stochastiques. La deuxième partie de la thèse se concentre sur l'estimation des paramètres liés au processus de création de biomasse par photosynthèse et de son allocation. Le modèle de plante est alors écrit sous la forme d'un modèle de Markov caché et des méthodes d'inférence bayésienne sont utilisées pour résoudre le problème.
18

An algorithmic look at phase-controlled branching processes/ Un regard algorithmique aux processus de branchement contrôlés par des phases

Hautphenne, Sophie 15 October 2009 (has links)
Branching processes are stochastic processes describing the evolution of populations of individuals which reproduce and die independently of each other according to specific probability laws. We consider a particular class of branching processes, called Markovian binary trees, where the lifetime and birth epochs of individuals are controlled by a Markovian arrival process. Our objective is to develop numerical methods to answer several questions about Markovian binary trees. The issue of the extinction probability is the main question addressed in the thesis. We first assume independence between individuals. In this case, the extinction probability is the minimal nonnegative solution of a matrix fixed point equation which can generally not be solved analytically. In order to solve this equation, we develop a linear algorithm based on functional iterations, and a quadratic algorithm, based on Newton's method, and we give their probabilistic interpretation in terms of the tree. Next, we look at some transient features for a Markovian binary tree: the distribution of the population size at any given time, of the time until extinction and of the total progeny. These distributions are obtained using the Kolmogorov and the renewal approaches. We illustrate the results mentioned above through an example where the Markovian binary tree serves as a model for female families in different countries, for which we use real data provided by the World Health Organization website. Finally, we analyze the case where Markovian binary trees evolve under the external influence of a random environment or a catastrophe process. In this case, individuals do not behave independently of each other anymore, and the extinction probability may no longer be expressed as the solution of a fixed point equation, which makes the analysis more complicated. We approach the extinction probability, through the study of the population size distribution, by purely numerical methods of resolution of partial differential equations, and also by probabilistic methods imposing constraints on the external process or on the maximal population size. / Les processus de branchements sont des processus stochastiques décrivant l'évolution de populations d'individus qui se reproduisent et meurent indépendamment les uns des autres, suivant des lois de probabilités spécifiques. Nous considérons une classe particulière de processus de branchement, appelés arbres binaires Markoviens, dans lesquels la vie d'un individu et ses instants de reproduction sont contrôlés par un MAP. Notre objectif est de développer des méthodes numériques pour répondre à plusieurs questions à propos des arbres binaires Markoviens. La question de la probabilité d'extinction d'un arbre binaire Markovien est la principale abordée dans la thèse. Nous faisons tout d'abord l'hypothèse d'indépendance entre individus. Dans ce cas, la probabilité d'extinction s'exprime comme la solution minimale non négative d'une équation de point fixe matricielle, qui ne peut être résolue analytiquement. Afin de résoudre cette équation, nous développons un algorithme linéaire, basé sur l'itération fonctionnelle, ainsi que des algorithmes quadratiques, basés sur la méthode de Newton, et nous donnons leur interprétation probabiliste en termes de l'arbre que l'on étudie. Nous nous intéressons ensuite à certaines caractéristiques transitoires d'un arbre binaire Markovien: la distribution de la taille de la population à un instant donné, celle du temps jusqu'à l'extinction du processus et celle de la descendance totale. Ces distributions sont obtenues en utilisant l'approche de Kolmogorov ainsi que l'approche de renouvellement. Nous illustrons les résultats mentionnés plus haut au travers d'un exemple où l'arbre binaire Markovien sert de modèle pour des populations féminines dans différents pays, et pour lesquelles nous utilisons des données réelles fournies par la World Health Organization. Enfin, nous analysons le cas où les arbres binaires Markoviens évoluent sous une influence extérieure aléatoire, comme un environnement Markovien aléatoire ou un processus de catastrophes. Dans ce cas, les individus ne se comportent plus indépendamment les uns des autres, et la probabilité d'extinction ne peut plus s'exprimer comme la solution d'une équation de point fixe, ce qui rend l'analyse plus compliquée. Nous approchons la probabilité d'extinction au travers de l'étude de la distribution de la taille de la population, à la fois par des méthodes purement numériques de résolution d'équations aux dérivées partielles, ainsi que par des méthodes probabilistes en imposant des contraintes sur le processus extérieur ou sur la taille maximale de la population.
19

Extensions du modèle standard neutre pertinentes pour l'analyse de la diversité génétique / Extensions of the standard neutral model relevant for the analysis of genetic diversity

Lapierre, Marguerite 25 September 2017 (has links)
Cette thèse se place dans le cadre de l'analyse des forces évolutives qui génèrent les polymorphismes et les divergences entre les génomes d'une même espèce. Le cadre théorique utilisé dans la majorité des domaines de l'évolution moléculaire est la théorie neutraliste, proposée par Motoo Kimura en 1968. Ce modèle est caractérisé par les hypothèses de neutralité, de taille constante de la population étudiée, et de panmixie. Dans un premier temps nous avons cherché à comprendre comment ce cadre théorique est utilisé en pratique et quelles peuvent être les conséquences de ces hypothèses sur les inférences et les prédictions faites dans ce cadre théorique. Pour cela nous avons mené deux études confrontant des données à des méthodes existantes d'inférence démographique. Une première étude a montré que les méthodes utilisées fréquemment pour l'inférence démographique microbienne, basées sur la reconstruction d'un arbre phylogénétique unique, sont biaisées par la sélection, la recombinaison et les biais d'échantillonnage. Nous avons ensuite comparé plusieurs méthodes d'inférence démographique en les appliquant à une population humaine africaine, les Yoruba. Cette étude a montré les limites d'une méthode existante, et elle illustre le problème d'identifiabilité des histoires démographiques lorsque l'inférence est basée sur le spectre de fréquence. Enfin, dans un troisième temps nous avons analysé plusieurs jeux de données de polymorphisme génétique avec un modèle de référence alternatif à coalescences multiples avec démographie. Nous avons comparé comment le modèle de référence actuel et ce modèle alternatif pouvaient expliquer les données observées de diversité génétique. / The general setting of this thesis is the analysis of evolutionary forces that generate polymorphisms and divergence between genomes within a species. The theoretical framework used in the majority of disciplines of molecular evolution is the neutral theory, formulated by Motoo Kimura in 1968. This model is characterized by the hypotheses of neutrality, constant population size and panmixia. First, we investigated how this theoretical framework is used in practice and what are the consequences of these hypotheses on the inferences and predictions made in this framework. To this end, we carried out two studies confronting existing demographic inference methods with data. A first study demonstrated that methods frequently used for bacterial demographic inference, based on a single reconstructed phylogenetic tree, are biased by selection, recombination and sampling bias. We then compared several demographic inference methods, by applying them to an African human population, the Yoruba. This study showed the limits of an existing method, and illustrates the issue of identifiability of demographic histories, when the inference is based on the site frequency spectrum. Finally, in a third study we analyzed several genetic polymorphism datasets with an alternative reference model comprising multiple mergers and demography. We compared how the current reference model and this alternative model can explain the observed genetic diversity.
20

Théorèmes limites pour les processus de branchement avec mutations / Limit theorems for branching processes with mutations

Delaporte, Cécile 02 October 2014 (has links)
Cette thèse étudie des modèles de populations branchantes appelés arbres de ramification, dans lesquels les individus évoluent indépendamment les uns des autres, ont des durées de vie indépendantes, identiquement distribuées (non nécessairement exponentielles), et donnent naissance à taux constant au cours de leur vie. On enrichit ces modèles en supposant que chaque individu porte un type et peut subir à la naissance une mutation, qui lui confère un nouveau type. On démontre dans le premier chapitre des résultats théoriques de convergence en loi pour des processus de Lévy bivariés sans sauts négatifs. Ces résultats sont ensuite exploités dans le deuxième chapitre pour établir un principe d'invariance pour l'arbre généalogique des populations décrites ci-dessus, enrichi de leur historique mutationnel, dans une asymptotique de grande taille de population. Enfin, on étudie dans le troisième chapitre la structure généalogique et le spectre de fréquence par site (nombre de mutations portées par un nombre donné d'individus) d'échantillons uniformes dans des populations branchantes critiques dont la limite d'échelle est un arbre brownien (par exemple, des arbres de naissance et mort critiques). Des perspectives d'applications de ces résultats à la génétique des populations sont présentées dans le quatrième chapitre. / This thesis studies branching population models called splitting trees, where individuals evolve independently from one another, have independent and identically distributed lifetimes (that are not necessarily exponential), and give birth at constant rate during their lives. We further assume that each individual carries a type, and possibly undergoes a mutation at her birth, that changes her type into a new one. In the first chapter, we prove convegence results for bivariate Lévy processes with non negative jumps. These theoretical results are used in the second chapter to establish an invariance principle for the genealogical tree of the populations described above, enriched with their mutational history, in a large population size asymptotic. Finally we study in the third chapter the genealogical structure and the site frequency spectrum (number of mutations carried by a given number of individuals) for uniform samples in critical branching populations whose scaling limit is a Brownian tree (e.g., critical birth-death trees). Possible future applications of these results to population genetics are presented in the fourth chapter.

Page generated in 0.1334 seconds