• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellular structures and stunted weighted projective space

O'Neill, Beverley January 2014 (has links)
Kawasaki has calculated the integral homology groups of weighted projective space, and his results imply the existence of a homotopy equivalence between weighted projective space and a CW-complex, with a single cell in each even dimension less than or equal to that of weighted projective space. When the weights satisfy certain divisibility conditions then the associated weighted projective space is actually homeomorphic to such an minimal CW-complex and such decompositions are well-known in these cases. Otherwise this minimal CW-complex is not a weighted projective space. Our aim is to give an explicit CW-structure on any weighted projective space, using an invariant decomposition of complex projective space with respect to the action of a product of finite cyclic groups. The result has many cells, in both odd and even dimensions; nevertheless, we identify it with a subdivision of the minimal decomposition whenever the weights are divisive. We then extend the decomposition to stunted weighted projective space, defined as the quotient of one weighted projective space by another. Finally, we compute the integral homology groups of stunted weighted projective space, identify generators in terms of cellular cycles, and describe cup products in the corresponding cohomology ring.
2

Invariant Measures on Projective Space

Chao, Chihyi 13 June 2002 (has links)
In 2 ¡Ñ2 case,we discuss the uniqueness of the u-invariant measure on projective space.Under the condition that |detM|=1 for any M in Gu and Gu is not compact,we have the followings: (1) For any x in P(R^2),if #{M¡Dx|M belongs Gu}>2, then the u-invariant measure is unique. (2) For some x in P(R^2),there exists x1,x2 such that {M¡Dx|M belongs Gu} is contained in {x1,x2},if x1 and x2 are both fixed,then the u-invariant measure v is not unique;otherwise,if u has mass only on x1 and x2,then the u-invariant measure is unique.
3

On the symmetric square of quaternionic projective space

Boote, Yumi January 2016 (has links)
The main purpose of this thesis is to calculate the integral cohomology ring of the symmetric square of quaternionic projective space, which has been an open problem since computations with symmetric squares were first proposed in the 1930's. The geometry of this particular case forms an essential part of the thesis, and unexpected results concerning two universal Pin(4) bundles are also included. The cohomological computations involve a commutative ladder of long exact sequences, which arise by decomposing the symmetric square and the corresponding Borel space in compatible ways. The geometry and the cohomology of the configuration space of unordered pairs of distinct points in quaternionic projective space, and of the Thom space MPin(4), also feature, and seem to be of independent interest.
4

Projective Space Codes for the Injection Metric

Khaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel. A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address the construction of non-constant-dimension codes designed for the injection metric.
5

Projective Space Codes for the Injection Metric

Khaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel. A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address the construction of non-constant-dimension codes designed for the injection metric.
6

Cálculo das retas numa superfície cúbica em P3

Assis Junior, Geraldo de 25 February 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 610342 bytes, checksum: f21a218652f285a264f80225f01a6011 (MD5) Previous issue date: 2011-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study cubic surfaces in P3. More specically, we take care to count the number of lines on these surfaces. In chapter one we proved that the number of lines on a non-singular cubic surface in P3 is 27. In chapter two, as the motivation for chapter three, we focused in the classifcation of singularities of plane curves. For the singular case, discussed in chapter three, we used two algorithm to compute the number of lines. The first one consists in to divide the computation in six packages, which are actually the open set of the grassmannian G(2; 4), and in each open set we count the lines contained on the given surface. The second algorithm consists of dividing the lines on S in two packages: The package of lines passing through P and those lines that not passing through P but they are contained in a plane that contain some line passing through P, here P is an isolated singularity of the given surface. / Neste trabalho estudamos as superfícies cúbicas em P3. Mais precisamente, nos preocupamos em contabilizar o número de retas sobre estas superfícies. No capítulo um provamos o conhecido resultado que afirma que o número de retas sobre uma superfície cúbica não singular em P3 é 27. No capítulo dois, como motivação para o capítulo três, é abordada a classificação das singularidades de curvas planas. Para o caso singular, abordado no capítulo três, utilizamos dois algoritmos para contar as retas. O primeiro consiste em dividir as retas em seis pacotes, que na verdade são os abertos que cobrem a grassmanniana G(2; 4), e em cada pacote contamos as retas que estão sobre a superfície dada. O segundo algoritmo consiste em dividir as retas sobre S em dois pacotes: O pacote das retas que passam por P e o pacote das retas que não passam por P, sendo P uma singularidade isolada da superfície em questão.
7

The classification and dynamics of the momentum polytopes of the SU(3) action on points in the complex projective plane with an application to point vortices

Shaddad, Amna January 2018 (has links)
We have fully classified the momentum polytopes of the SU(3) action on CP(2)xCP(2) and CP(2)xCP(2) xCP(2), both actions with weighted symplectic forms, and their corresponding transition momentum polytopes. For CP(2)xCP(2) the momentum polytopes are distinct line segments. The action on CP(2)xCP(2) xCP(2), has 9 different momentum polytopes. The vertices of the momentum polytopes of the SU(3) action on CP(2)xCP(2) xCP(2), fall into two categories: definite and indefinite vertices. The reduced space corresponding to momentum map image values at definite vertices is isomorphic to the 2-sphere. We show that these results can be applied to assess the dynamics by introducing and computing the space of allowed velocity vectors for the different configurations of two-vortex systems.
8

CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION

Cohen, Camron Alexander Robey 02 July 2020 (has links)
No description available.
9

Teoremas de comparação em variedades Käler e aplicações / Laplacian comparison of theorems for Käler manifolds and applications

Santos, Adina Rocha dos 25 March 2011 (has links)
In this work we present the proofs of the Laplacian comparison theorems for Kähler manifolds Mm of complex dimension m with holomorphic bisectional curvature bounded from below by −1, 1, and 0. The manifolds being compared are the complex hyperbolic space CHm, the complex projective space CPm, and the complex Euclidean space Cm, which holomorphic bisectional curvatures are −1, 1, and 0, respectively. Moreover, as applications of the Laplacian comparison theorems, we describe the proof of the Bishop- Gromov comparison theorem for Kähler manifolds and obtain an estimate for the first eigenvalue λ1(M) of the Laplacian operator, that is, λ1(M) ≤ m2 = λ1(CHm), and show that the volume of Kähler manifolds with holomorphic bisectional curvature bounded from below by 1 is bounded by the volume of CPm. The results cited above have been proved in 2005 by Li and Wang, in an article Comparison theorem for Kähler Manifolds and Positivity of Spectrum , published in the Journal of Differential Geometry. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação, apresentamos as demonstrações dos teoremas de comparação do Laplaciano para variedades Kähler completas Mm de dimensão complexa m com curvatura bisseccional holomorfa limitada inferiormente por −1, 1 e 0. As variedades a serem comparadas são o espaço hiperbólico complexo CHm, o espaço projetivo complexo CPm e o espaço Euclidiano complexo Cm, cujas curvaturas bisseccionais holomorfas são −1, 1 e 0, respectivamente. Além disso, como aplicação dos teoremas de comparação do Laplaciano, descrevemos a prova do Teorema de Comparação de Bishop-Gromov para variedades Kähler; obtemos uma estimativa para o primeiro autovalor λ1(M) do Laplaciano, isto é, λ1(M) ≤ m2 = λ1(CHm); e mostramos que o volume de variedades Kähler, com curvatura bisseccional limitada inferiormente por 1, é limitado pelo volume de CPm. Os resultados citados acima foram provados em 2005 por Li e Wang no artigo Comparison Theorem for Kähler Manifolds and Positivity of Spectrum , publicado no Journal of Differential Geometry.
10

Classical Binary Codes And Subspace Codes in a Lattice Framework

Pai, Srikanth B January 2015 (has links) (PDF)
The classical binary error correcting codes, and subspace codes for error correction in random network coding are two different forms of error control coding. We identify common features between these two forms and study the relations between them using the aid of lattices. Lattices are partial ordered sets where every pair of elements has a least upper bound and a greatest lower bound in the lattice. We shall demonstrate that many questions that connect these forms have a natural motivation from the viewpoint of lattices. We shall show that a lattice framework captures the notion of Singleton bound where the bound is on the size of the code as a function of its parameters. For the most part, we consider a special type of a lattice which has the geometric modular property. We will use a lattice framework to combine the two different forms. And then, in order to demonstrate the utility of this binding view, we shall derive a general version of Singleton bound. We will note that the Singleton bounds behave differently in certain respects because the binary coding framework is associated with a lattice that is distributive. We shall demonstrate that lack of distributive gives rise to a weaker bound. We show that Singleton bound for classical binary codes, subspace codes, rank metric codes and Ferrers diagram rank metric codes can be derived using a common technique. In the literature, Singleton bounds are derived for Ferrers diagram rank metric codes where the rank metric codes are linear. We introduce a generalized version of Ferrers diagram rank metric codes and obtain a Singleton bound for this version. Next, we shall prove a conjecture concerning the constraints of embedding a binary coding framework into a subspace framework. We shall prove a conjecture by Braun, Etzion and Vardy, which states that any such embedding which contains the full space in its range is constrained to have a particular size. Our proof will use a theorem due to Lovasz, a subspace counting theorem for geometric modular lattices, to prove the conjecture. We shall further demonstrate that any code that achieves the conjectured size must be of a particular type. This particular type turns out to be a natural distributive sub-lattice of a given geometric modular lattice.

Page generated in 0.068 seconds