1 |
OBJECT RECOGNITION BY GROUND-PENETRATING RADAR IMAGING SYSTEMS WITH TEMPORAL SPECTRAL STATISTICSOno, Sashi, Lee, Hua 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / This paper describes a new approach to object recognition by using ground-penetrating radar (GPR)
imaging systems. The recognition procedure utilizes the spectral content instead of the object shape
in traditional methods. To produce the identification feature of an object, the most common spectral
component is obtained by singular value decomposition (SVD) of the training sets. The
identification process is then integrated into the backward propagation image reconstruction
algorithm, which is implemented on the FMCW GPR imaging systems.
|
2 |
Multi-Mode Propagation Method for 2D Bi-directional Ring CavitiesChou, Yi-Hsien 27 June 2003 (has links)
Micro ring-cavity, like the Fabry-Perot cavity, is an optical device that resonates at certain frequencies. It is used as a phase compensator, and filter. Easily fabricated, the micro ring-cavity can be mass-produced, the ring-cavity is becoming evermore important as integrated opto-electronic technology advances.
In this thesis, we begin with a novel one-dimensional theory that considers bi-directional traffic in the micro-ring cavity. By separating the device into easily manageable regions, and employing only fundamental modes in each of the sections, we obtain a closed-form formula for the transmission and reflection coefficient of this device. Under certain circumstances, when the directional coupler length is short but its coupling strength is strong, we observed a significant amount of reflection of optical energy at some frequencies. This phenomena is currently unknown to the opto-electronic industry.
To further study this, we developed a more rigorous multi-mode propagation method for two-dimensional bi-directional ring cavities. The problem at hand is first being sliced into regions of multi-layered sections. Within each section, we can express the fields in terms of the underlying waveguide modes of the structure. At the interfaces of these sections, we construct coupled integral equations, which are derived from the continuity requirement of the tangential fields. We have complete formulations for both TE and TM cases, down to the coupled matrix equation for the unknown modal coefficients at each junction.
|
3 |
The Study of All-optical Nonlinear Waveguide DevicesTasy, Rong-Zhan 01 August 2003 (has links)
In the paper, the beam propagation method is used to analyze the characteristics and the applications of nonlinear optical waveguide structures. The nonlinear optical waveguide is a medium whose refractive index changes with the electric field intensity. Based on the mode theory, the propagating envelop of optical light waves in the three-layers nonlinear waveguide with the nonlinear cladding, the nonlinear substrate and the linear guiding film can be solved. Not only the dispersion relation curve is described, but also the affection of input power to the electric field distribution is observed.
In the application of nonlinear optical waveguide structure, the three-layers nonlinear waveguide structure and the local nonlinear Mach-Zehnder waveguide interferometer structure will be discussed: In the three-layers nonlinear waveguide structure, by launching the symmetric and antisymmetric modes, various characteristics of spatial optical solitons will be observed. Based on the interaction property between spatial optical solitons, a new all-optical 1¡ÑN switching device will be proposed; In the local nonlinear Mach-Zehnder waveguide interferometer structure, by fixing the input signal power and changing the control power, output signal beam will show the switching property. Besides, by changing the local nonlinear distributions, the nonlinear Mach-Zehnder interferometer will show various logic functions. The numerical results show that the proposed structures could function as all-optical switch devices and all-optical logic gates.
|
4 |
Evaluating Establishment of Native Rhizomatous Grass Species for Reclaiming Sites in Southern Alberta with Limited TopsoilMcGregor, Laura Elizabeth 26 April 2013 (has links)
Anthropogenic disturbances to Alberta’s landscape have resulted in the widespread removal of indigenous plant communities. Steep slopes and limited topsoil are often barriers when trying to reestablish vegetation; however, native rhizomatous grass species have a number of traits that make them ideally suited to revegetate challenging sites. A field study evaluated the establishment of three species of native perennial rhizomatous grasses (Calamagrostis canadensis, Calamovilfa longifolia, and Hierochloe odorata) from three propagation methods. Initial results suggest that these species were able to establish and survive on these sites despite poor soil conditions. Establishment was poor in seeded plots (24.1%), but improved with root cuttings (75.9%) and nursery-grown plugs (96.3%). The use of vegetative establishment methods could increase the successful application of native grass species, and encourage their use in landscape design and restoration projects. / Thank you to Imperial Oil and the Glenbow Ranch Park Foundation for providing financial and material support for this project.
|
5 |
Wet Etching Optical Fibers to Sub-micron Diameters for Sensing ApplicationCui, Ziruo 05 June 2014 (has links)
No description available.
|
6 |
Método FD-BPM semivetorial de ângulo largo para a análise de estruturas tridimensionais utilizando a técnica ADI / not availableNascimento, Valtemir Emerencio do 28 June 2002 (has links)
O projeto de dispositivos ópticos integrados é de fundamental importância no desenvolvimento de sistemas de comunicações ópticas. Por esse motivo, várias técnicas de modelamento para estes dispositivos tem surgido na literatura. Esta corrida em direção à sofisticação das ferramentas de modelamento decorre da evolução natural dos processos de fabricação, que tem permitido a construção de estruturas com geometrias bastante complexas. Dentre as várias técnicas utilizadas atualmente nas simulações de dispositivos fotônicos destaca-se o método da propagação do feixe (BPM). Este método apresenta como grande atrativo o fato de ser de fácil implementação e de apresentar baixa carga computacional. Inicialmente, a técnica BPM foi empregada utilizando a equação de onda escalar de Helmholtz. Esta abordagem é eficiente desde que a diferença entre os índices de refração dos materiais utilizados no guia de onda seja pequena e que a geometria da estrutura não apresente variações na direção de propagação. Entretanto, a luz é uma onda eletromagnética que possui propriedades intrinsecamente vetoriais. As propriedades vetoriais (efeitos de polarização) tornam-se importantes quando estruturas que apresentam elevado contraste de índices de refração precisam ser investigadas. Neste trabalho o fenômeno da polarização é avaliado através da utilização da equação de onda semivetorial de Helmholtz em três dimensões, a qual é desenvolvida em termos das componentes transversais de campo magnético (Formulação H). A solução da equação de onda semivetorial de Helmholtz é obtida pelo método BPM expandido em diferenças finitas (FD). Os aproximantes de Padé de ordem (1,0), equivalentes à propagação no limite paraxial, e de ordem (1,1), equivalentes à propagação em ângulo largo, são implementados e seus resultados discutidos ) A propagação do campo no FD-BPM tridimensional proposto aqui se dá através da utilização da técnica implícita das direções alternadas (ADI), a qual proporciona uma ótima estabilidade com baixo esforço computacional. A validação deste método é feita através da simulação de guias de onda tipo rib, avaliando parâmetros numéricos como: passo de propagação longitudinal, largura da gaussiana de excitação inicial, passo de discretização transversal, número de iterações e índice de referência. Adicionalmente, também é investigada uma fibra óptica com geometria tipo D. Estes resultados serão comparados com os resultados existentes na literatura para estas estruturas a fim de garantir a eficácia do método. / It is well known that finite difference beam propagation methods have been a valuable tool for the simulation of a large variety of optical waveguides structures such as: Mach-Zehnder, Y junctions, directional couplers, switches, etc. The increasing complexity of these structures, either in terms of geometry or material composition, requires more accurate modeling techniques. Among the several techniques available nowadays the beam propagation method (BPM) is maybe the most celebrated one. This method has attracted a great deal of attention by virtue of its ease of implementation and low computational effort. Initially, the BPM was applied to solve the scalar Helmholtz equation. This approach can be quite efficient for waveguides exhibiting low refractive index contrast and no variation along the longitudinal direction. Light, by its turn, is an electromagnetic wave with intrinsically vectorial properties. The vectorial properties (polarization effects) become very important when high contrast and longitudinally varying structures are involved. In this work the polarization phenomenon is evaluated by means of the three-dimensional semivectorial Helmholtz equation, which is solved in terms of its transverse magnetic field components (H formulation). The solution of this semivectorial equation is obtained via the finite difference BPM method expanded in terms of the following Padé approximants: Padé(1,0), equivalent to the semivectorial equation in the paraxial limit, and Padé (1,1), the wide angle solution. The field propagation dynamics in both cases is performed via alternate direction implicit method (ADI), which provides good numerical stability and low computational effort. As far as the authors know, this is the first time that a wide-angle formalism based on Padé(1,1) and ADI technique is proposed to solve the semivectorial Helmholtz equation. The validation of this new wide-angle method is performed for three well known rib waveguides structures available in the literature, and its accuracy measured in terms of the following parameters: longitudinal step size, initial field (gaussian) width, transversal step size, iteration number, and reference refractive index. A D-shaped fiber is also investigated with this method for comparison purposes. The results obtained in all cases are checked against those available in the literature in order to guarantee the efficiency of the method.
|
7 |
The Analysis, Simulations, and Applications of the Structure of the Nonlinear WaveguideLin, Jyh-Shiuan 10 July 2002 (has links)
In this paper, we used the beam propagation method to analyze the characteristics of nonlinear optical waveguides. Refractive indexes of media in planar optical waveguides are changed with the electric field intensity called nonlinear planar optical waveguides. We use the modal theory to solve the three-layer planar optical waveguide with the guiding film is nonlinear. We not only obtained dispersion relation curves, but also observed the affections of the input power to field distributions. By the basic theory of this, we proposed a novel method to analyze multi-layer planar optical waveguides with nonlinear or localized nonlinear guiding films.By the theory and novel method we pointed out, on the other hand, we proposed an all-optical switch and analyze the all-optical device by the beam propagation method.
|
8 |
Método FD-BPM semivetorial de ângulo largo para a análise de estruturas tridimensionais utilizando a técnica ADI / not availableValtemir Emerencio do Nascimento 28 June 2002 (has links)
O projeto de dispositivos ópticos integrados é de fundamental importância no desenvolvimento de sistemas de comunicações ópticas. Por esse motivo, várias técnicas de modelamento para estes dispositivos tem surgido na literatura. Esta corrida em direção à sofisticação das ferramentas de modelamento decorre da evolução natural dos processos de fabricação, que tem permitido a construção de estruturas com geometrias bastante complexas. Dentre as várias técnicas utilizadas atualmente nas simulações de dispositivos fotônicos destaca-se o método da propagação do feixe (BPM). Este método apresenta como grande atrativo o fato de ser de fácil implementação e de apresentar baixa carga computacional. Inicialmente, a técnica BPM foi empregada utilizando a equação de onda escalar de Helmholtz. Esta abordagem é eficiente desde que a diferença entre os índices de refração dos materiais utilizados no guia de onda seja pequena e que a geometria da estrutura não apresente variações na direção de propagação. Entretanto, a luz é uma onda eletromagnética que possui propriedades intrinsecamente vetoriais. As propriedades vetoriais (efeitos de polarização) tornam-se importantes quando estruturas que apresentam elevado contraste de índices de refração precisam ser investigadas. Neste trabalho o fenômeno da polarização é avaliado através da utilização da equação de onda semivetorial de Helmholtz em três dimensões, a qual é desenvolvida em termos das componentes transversais de campo magnético (Formulação H). A solução da equação de onda semivetorial de Helmholtz é obtida pelo método BPM expandido em diferenças finitas (FD). Os aproximantes de Padé de ordem (1,0), equivalentes à propagação no limite paraxial, e de ordem (1,1), equivalentes à propagação em ângulo largo, são implementados e seus resultados discutidos ) A propagação do campo no FD-BPM tridimensional proposto aqui se dá através da utilização da técnica implícita das direções alternadas (ADI), a qual proporciona uma ótima estabilidade com baixo esforço computacional. A validação deste método é feita através da simulação de guias de onda tipo rib, avaliando parâmetros numéricos como: passo de propagação longitudinal, largura da gaussiana de excitação inicial, passo de discretização transversal, número de iterações e índice de referência. Adicionalmente, também é investigada uma fibra óptica com geometria tipo D. Estes resultados serão comparados com os resultados existentes na literatura para estas estruturas a fim de garantir a eficácia do método. / It is well known that finite difference beam propagation methods have been a valuable tool for the simulation of a large variety of optical waveguides structures such as: Mach-Zehnder, Y junctions, directional couplers, switches, etc. The increasing complexity of these structures, either in terms of geometry or material composition, requires more accurate modeling techniques. Among the several techniques available nowadays the beam propagation method (BPM) is maybe the most celebrated one. This method has attracted a great deal of attention by virtue of its ease of implementation and low computational effort. Initially, the BPM was applied to solve the scalar Helmholtz equation. This approach can be quite efficient for waveguides exhibiting low refractive index contrast and no variation along the longitudinal direction. Light, by its turn, is an electromagnetic wave with intrinsically vectorial properties. The vectorial properties (polarization effects) become very important when high contrast and longitudinally varying structures are involved. In this work the polarization phenomenon is evaluated by means of the three-dimensional semivectorial Helmholtz equation, which is solved in terms of its transverse magnetic field components (H formulation). The solution of this semivectorial equation is obtained via the finite difference BPM method expanded in terms of the following Padé approximants: Padé(1,0), equivalent to the semivectorial equation in the paraxial limit, and Padé (1,1), the wide angle solution. The field propagation dynamics in both cases is performed via alternate direction implicit method (ADI), which provides good numerical stability and low computational effort. As far as the authors know, this is the first time that a wide-angle formalism based on Padé(1,1) and ADI technique is proposed to solve the semivectorial Helmholtz equation. The validation of this new wide-angle method is performed for three well known rib waveguides structures available in the literature, and its accuracy measured in terms of the following parameters: longitudinal step size, initial field (gaussian) width, transversal step size, iteration number, and reference refractive index. A D-shaped fiber is also investigated with this method for comparison purposes. The results obtained in all cases are checked against those available in the literature in order to guarantee the efficiency of the method.
|
9 |
Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares / not availableFlamino, Reinaldo de Sales 21 September 2001 (has links)
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho. / This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, Δx, proporcional to O(Δx2) for the CN and to O(Δx4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.
|
10 |
Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares / not availableReinaldo de Sales Flamino 21 September 2001 (has links)
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho. / This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, Δx, proporcional to O(Δx2) for the CN and to O(Δx4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.
|
Page generated in 0.1142 seconds