Spelling suggestions: "subject:"protein aggregate""
11 |
Neurotoxins and Neurotoxicity Mechanisms. An OverviewSegura-Aguilar, Juan, Kostrzewa, Richard M. 01 December 2006 (has links)
Neurotoxlns represent unique chemical tools, providing a means to 1) gain insight into cellular mechanisms of apopotosis and necrosis, 2) achieve a morphological template for studies otherwise unattainable, 3) specifically produce a singular phenotype of denervation, and 4) provide the starting point to delve into processes and mechanisms of nerve regeneration and sprouting. There are many other notable uses of neurotoxins in neuroscience research, and ever more being discovered each year. The objective of this review paper is to highlight the broad areas of neuroscience in which neurotoxins and neurotoxicity mechanism come into play. This shifts the focus away from neurotoxins per se, and onto the major problems under study today. Neurotoxins broadly defined are used to explore neurodegenerative disorders, psychiatric disorders and substance use disorders. Neurotoxic mechanisms relating to protein aggregates are indigenous to Alzheimer disease, Parkinson's disease. NeuroAIDS is a disorder in which microglia and macrophages have enormous import. The gap between the immune system and nervous system has been bridged, as neuroinflammation is now considered to be part of the neurodegenerative process. Related mechanisms now arise in the process of neurogenesis. Accordingly, the entire spectrum of neuroscience is within the purview of neurotoxins and neurotoxicity mechanisms. Highlights on discoveries in the areas noted, and on selective neurotoxins, are included, mainly from the past 2 to 3 years.
|
12 |
Fluorescence studies of complex systems : organisation of biomoleculesMarushchak, Denys January 2007 (has links)
The homo and hetero dimerisation of two spectroscopically different chromophores were studied, namely: 4,4-difluoro-4-bora-3a,4a-diazas-indacene (g-BODIPY) and its 5-styryl-derivative (r-BODIPY). Various spectroscopic properties of the r-BODIPY in different common solvents were determined. It was shown that g- and r-BODIPY in the ground state can form homo- as well as hetero dimers. We demonstrate that the ganglioside GM1 in lipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) exhibits a non-uniform lateral distribution, which is an argument in favour of self-aggregation of GM1 being an intrinsic property of the GM1. This was concluded from energy transfer/migration studies of BODIPY-labelled gangliosides. An algorithm is presented that quantitatively accounts for donor–donor energy migration (DDEM) among fluorophore-labelled proteins forming regular non-covalent polymers. The DDEM algorithm is based on Monte Carlo (MC) and Brownian dynamics (BD) simulations and applies to the calculation of fluorescence depolarisation data, such as the fluorescence anisotropy. Thereby local orientations, as well as reorienting motions of the fluorescent groups are considered in the absence and presence of DDEM among them. A new method, in which a genetic algorithm (GA) was combined with BD and MC simulations, was developed to analyse fluorescence depolarisation data collected by the time-correlated single photon counting technique. It was applied to study g-BODIPY-labelled filamentous actin (F-actin). The technique registered the local order and reorienting motions of the fluorophores, which were covalently coupled to cysteine 374 (C374) in actin and interacted by means of electronic energy migration within the polymer. Analyses of F-actin samples composed of different fractions of labelled actin molecules revealed the known helical organiszation of F-actin, and demonstrated the usefulness of this technique for structure determination of complex protein polymers. The distance from the filament axis to the fluorophore was found to be considerably less than expected from the proposed position of C374 at a high filament radius. In addition, polymerisation experiments with BODIPY-actin suggest a 25-fold more efficient signal for filament formation than pyrene-actin.
|
13 |
Crystalline, membrane-embedded, and fibrillar proteins investigated by solid-state NMR spectroscopy / Untersuchung kristalliner, membranständiger und fibrillärer Proteine mittels Festkörper-NMR-SpektroskopieSchneider, Robert 30 January 2009 (has links)
No description available.
|
14 |
Modelování Huntingtonovy choroby a bněčná terapie při poškození míchy. / Huntington's disease modeling and stem cell therapy in spinal cord disorders and injuryHruška-Plocháň, Marián January 2013 (has links)
Neurological disorders affect more than 14% of the population worldwide and together with traumatic brain and spinal cord injuries represent major health, public and economic burden of the society. Incidence of inherited and idiopathic neurodegenerative disorders and acute CNS injuries is growing globally while neuroscience society is being challenged by numerous unanswered questions. Therefore, research of the CNS disorders is essential. Since animal models of the CNS diseases and injuries represent the key step in the conversion of the basic research to the clinics, we focused our work on generation of new animal models and on their use in pre-clinical research. We generated and characterized transgenic minipig model of Huntington's disease (HD) which represents the only successful establishment of a transgenic model of HD in minipig which should be valuable for testing of long term safety of HD therapeutics. Next, we crossed the well characterized R6/2 mouse HD model with the gad mouse model which lacks the expression of UCHL1 which led to results that support the theory of "protective" role of mutant huntingtin aggregates and suggest that UCHL1 function(s) may be affected in HD disturbing certain branches of Ubiquitin Proteasome System. Traumatic spinal cord injury and Amyotrophic Lateral...
|
15 |
Synthesis of Thiophene-Vinyl-Benzothiazole Based Ligand Analogues for Detection of Aβ and Tau Pathology in Alzheimer's DiseaseJohansson, Joel January 2024 (has links)
As of today, Alzheimer’s disease is the leading cause of dementia among neurodegenerative disorders, affecting many millions of people worldwide. As the average life span of populations increase, more and more people succumb to the illness each year. Like other neurodegenerative disorders, Alzheimer’s disease can be attributed to the accumulation of protein aggregates in the brain. These amyloid-β peptides and tau proteins can presumably be detected in the brain many years before the onset of clinical symptoms. Development of fluorescent ligands, capable of binding to these neuropathological hallmarks and highlighting them, could serve as molecular diagnostic tools and facilitate an early diagnosis of the disease. The method could also be useful in studying disease progression and evaluating the effects of novel treatments. One such ligand is HS-259. The aim of this project was to synthetize different analogues of HS-259, and test their selectivity towards the aforementioned aggregates in brain tissue from an individual with Alzheimer’s disease. Staining of tissue samples with analogue solution enables visualization of aggregate sites through fluorescence imaging. In the end, five analogues were synthetized, albeit in relatively low overall yields. Synthetic methods included Suzuki-Miyara cross-couplings, Ullmann-type arylations and condensations. Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) were used for analysis of the compounds. Two of the five analogues could be tested for staining of aggregates and assessed for photophysical characteristics, i.e. absorption- and emission spectra. One analogue stained both amyloid-β aggregates and some tau aggregates, whereas the other stained neither. Since only two analogues were tested and rendered inconsistent results, further studies are needed to assess the binding properties of HS-259 analogues in general.
|
Page generated in 0.0541 seconds