• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 11
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 97
  • 97
  • 24
  • 24
  • 22
  • 17
  • 17
  • 17
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Determining the Structural Dynamics and Topology of Canonical HOLIN-S05 Using EPR Spectroscopy

Perera, Rehani Shinuka 11 June 2020 (has links)
No description available.
52

Understanding the hyper-activation among the recurrent oncogenic miss-sense mutations in NSD2 methyltransferase

Hincapié-Otero, María Mercedes 03 1900 (has links)
Mutations in epigenetic regulators such as the SET domain-containing methyltransferase NSD2 are of high interest among the research community nowadays. The involvement of this mutations in multiple diseases put them in the spotlight. Interestingly, the change of the glutamic acid residue in the position 1099 of the NSD2 SET domain for a lysine residue has been recurrently found in multiple myeloma patients. This mutation produces a hyperactive enzyme that hypermethylate the natural enzymatic substrate: the lysine in the position 36 of the basic tail of the histone 3 in the nucleosomal context. Apparently, this hyperactivation may be related to the disruption of a critical salt-bridge that stabilize an autoregulatory loop of the NSD2 catalytic site. However, despite the extensive research that have been done around this phenomenon, the molecular mechanism behind this hyperactivation still remains unknow. For this reason, in this study we addressed this matter from a structural point of view by evaluating the structure and dynamics of the protein in solution by high-resolution Nuclear Magnetic Resonance (NMR) spectroscopy and biophysical techniques. We found increased local segmental motions in us to ms timescale that induced protein flexibility that may correlate with gain-of-function of E1099K miss-sense mutation. Further functional studies with the native substrates in vitro and in vivo are needed to understand this observation.
53

Influence of Solvent on Protein Dynamics and Activity

Khodadadi, Sheila 01 September 2009 (has links)
No description available.
54

Protein Disorder and Dynamics Studied by Molecular Dynamics Simulations and NMR

Yu, Lei January 2021 (has links)
No description available.
55

Understanding biological motions with improved resolution and accuracy by NMR

Kharchenko, Vladlena 12 1900 (has links)
Biological motion constitutes a key and indispensable element of all biomolecules, as dynamics tightly link spatial architecture with function. Several computational and experimental techniques have been developed to study biomolecular dynamics. Nevertheless, few label-free and atomic or sub-atomic resolution techniques are able to capture biological motions at close to native conditions. Indeed, the only label-free technique giving atomic level access to dynamics from picoseconds down to seconds is nuclear magnetic resonance (NMR) spectroscopy. In this dissertation, I identify the imperfections and inaccuracies accompanying the routine and well-accepted methods of probing protein dynamics via 15N spin relaxation NMR measurements. Subsequently, I propose and develop solutions and experimental approaches to overcome the limitations and eliminate artefacts. The routine procedures applying heavy water as an internal locking standard lead to artifacts in every type of relaxation rate of 15N amides due to reaction with exchangeable deuterons. The deviations from correct values are most pronounced for highly dynamic and exposed protein fragments. I introduce a novel set of directly detected 15N spin relaxation experiments yielding an unprecedent resolution resolving the signal overlap, although of lower sensitivity. I propose a more accurate. Finally, I present how the 15N spin relaxation techniques and improved routines can be applied to understand biological processes that cannot be described without monitoring molecular motions. Using the example of human BTB domains, which are directly linked to human cancer, I demonstrate the ability to detect cryptic binding sites on the surfaces of proteins. The cryptic binding site was verified by a comprehensive NMR-monitored fragment-based screening that revealed a hit-rate only for MIZ1BTB, which was the only protein displaying slow segmental motions. I also managed to track subtle and biologically-relevant dynamic modulations of an exposed H3 histone tail affected by H1 histones or other histone variants. Enhancement of H3 tail dynamics led to increased H3K36 methylation, while restriction of motions resulted in the opposite effect. These observed correlations unequivocally support the essential role of molecular mobility in biological functions.
56

Probing the biophysical interactions between autolysin proteins and polystyrene surfaces

Wadduwage, Radha Paramee 08 December 2023 (has links) (PDF)
Biofilms formed on medical devices pose significant challenges, compromising device efficiency and serving as sources of infection. Staphylococcus epidermidis, an opportunistic pathogen, relies on the autolysin protein, notably its R2ab and amidase domains, to attach to polystyrene surfaces and initiate biofilm formation. Despite their pivotal role, the structural intricacies of these proteins’ interactions with surfaces remain elusive. In this dissertation, the multifaceted aspects of protein interactions with polystyrene surfaces and the implications of these interactions for biofilm control are studied. Over the course of this study, it is found how the R2ab and amidase domains influence biofilm formation on polystyrene surfaces. Pretreatment of polystyrene plates with these domains effectively inhibits biofilm growth, underscoring their strong affinity for polystyrene surfaces. Furthermore, these domains demonstrate a remarkable propensity for interactions with polystyrene nanoparticles (PSNPs). The insights gained from this study offer promising avenues for the development of novel biofilm eradication strategies, with the potential to enhance the longevity and effectiveness of medical devices. Shifting to a broader context of nanotechnology, the influence of nanoparticle size on protein adsorption and unfolding stabilities is studied using two distinct proteins, R2ab and GB3. Isothermal titration calorimetry reveals tighter binding to smaller PSNPs for both proteins, with enthalpy as the driving force. Structural changes in the adsorbed proteins are detected through fluorescence spectroscopy and circular dichroism, indicating a propensity for protein unfolding upon adsorption. Importantly, this unfolding effect is less pronounced with larger PSNPs, which has implications for protein binding on macroscopic surfaces. The significance of side-on interactions between neighboring proteins is underscored in this work, since they appear to stabilize proteins bound to surfaces with low curvature, an observation with critical implications for the protein corona formed around nanoparticles and its potential to preserve the structure of surface-adsorbed proteins in vivo. This dissertation also investigates the molecular-level interaction between R2ab and PSNPs of varying sizes. By utilizing lysine methylation in mass spectrometry and hydrogen-deuterium exchange (HDX) NMR spectroscopy, this work investigates how changes in methylation patterns and hydrogen-deuterium exchange rates in specific regions of R2ab reflect conformational changes upon binding to PSNPs. In conclusion, this dissertation comprehensively explores protein-surface interactions and reveals several important and surprising features of the proteins that drive biofilm formation.
57

Redox Tuning of Flavin and Ultrafast Electron Transfer Mechanisms in DNA Repair by Photolyases

Zhang, Meng 28 December 2016 (has links)
No description available.
58

Time Resolved Femtosecond Optical Studies of Heme Proteins Myoglobin and Cytochrome <i>c</i>

Stevens, Jeffrey Alan 21 March 2011 (has links)
No description available.
59

Adsorption des protéines sur les nanomatériaux. Biochimie et physico-chimie d’un nouveau stress / Protein adsorption on nanomaterials. Biochemistry and physical-chemistry of a new stress

Devineau, Stéphanie 04 October 2013 (has links)
Les nanomatériaux posent de nouvelles questions en termes de toxicologie humaine et environnementale et représentent une nouvelle interface avec le milieu biologique aux propriétés spécifiques. De nombreuses inconnues demeurent, en particulier à l’échelle moléculaire, pour permettre d’expliquer certains mécanismes de toxicité. Lorsqu’elles entrent en contact avec le milieu biologique, les nanoparticules se couvrent d’une couche de protéines adsorbées. Celle-ci leur confère une nouvelle « identité biologique » qui contrôle la réponse cellulaire et leur devenir au sein de l’organisme. Nous avons étudié l’adsorption de protéines modèles sur la silice nanostructurée. Après avoir caractérisé la silice nanoporeuse et les nanoparticules de silice utilisées, l’adsorption de la myoglobine, de l’hémoglobine et des protéines d’un extrait cellulaire de levure a été étudiée afin de déterminer les paramètres physico-chimiques et thermodynamiques de l’adsorption des protéines sur la silice. Un enrichissement en résidus basiques, regroupés en clusters de charge, favorise l’adsorption des protéines grâce à la formation d’interactions électrostatiques avec la surface chargée de la silice, indépendamment de la charge globale de la protéine. A l’inverse, un enrichissement en résidus aromatiques est défavorable à l’adsorption car ces résidus forment des interactions π-π qui rigidifient la structure de la protéine. L’identification des protéines adsorbées et non adsorbées à partir d’un milieu complexe pourrait également être utilisée pour les études de toxicité cellulaire. A partir de l’étude de la structure, de la dynamique et de l’activité de la myoglobine et de l’hémoglobine adsorbées sur les nanoparticules de silice, nous avons cherché à définir l’état d’une protéine adsorbée. L’étude de la structure, réalisée par dichroïsme circulaire, spectroscopie UV-visible, d’absorption X, infrarouge, fluorescence et microcalorimétrie, montre une perte partielle de structure importante des protéines adsorbées associée à une grande hétérogénéité de conformations, sans modification majeure de la structure de l’hème. Deux sites potentiels d’interaction entre myoglobine et nanoparticules de silice ont été identifiés à l’aide d’une technique de cartographie de surface par irradiation. L’étude de la dynamique de la myoglobine adsorbée par diffusion élastique et inélastique de neutrons a permis de montrer que l’adsorption s’accompagnait d’une diminution importante de la flexibilité de la protéine. Malgré la perte de structure, la metmyoglobine adsorbée conserve une activité de fixation de ligands très proche de celle de la protéine libre. L’hémoglobine adsorbée présente de façon inattendue une augmentation de son affinité pour l’oxygène et une diminution de sa coopérativité, sans dissociation du tétramère. Cet effet est reproductible lors de l’adsorption de l’hémoglobine humaine, de l’hémoglobine pontée DCL et de l’hémoglobine mutée S. Deux effecteurs permettent par ailleurs de moduler l’affinité de l’hémoglobine adsorbée. Aussi importantes soient-elles, les modifications de structure et d’activité observées sont entièrement réversibles après désorption dans des conditions douces. L’adsorption des hémoprotéines sur les nanoparticules de silice représente véritablement un nouveau type de stress avec résilience pour les protéines en termes de relations entre structure, dynamique et activité. / Nanomaterials raise new questions in environmental and human toxicology and represent a novel interface with specific properties with the biological medium. Several unknown remain to explain all the mechanisms of toxicity, especially at the molecular lever. When they enter the biological medium, nanoparticles get covered by a protein corona. This corona yields to a new “biological identity” that controls the cellular response to nanoparticles and their fate in the organism. We studied the adsorption of model proteins on nanostructured silica. The first part is dedicated to the characterization of nanoporous silica and silica nanoparticles that we used. Then the adsorption of myoglobin, hemoglobin and protein mixture from yeast cells was studied to determine the thermodynamic and physical-chemical parameters of protein adsorption on silica. The enrichment of basic residues, gathered in charge clusters, favors the adsorption of proteins by the formation of electrostatic interactions with the charged surface of silica, independently of the global charge of the protein. On the contrary, the enrichment in aromatic residues is unfavorable to protein adsorption because they form π-π interactions that rigidify the protein structure. The identification of adsorbed and non-adsorbed proteins from a complex medium could also be used for cellular toxicity studies. From the study of the structure, the dynamics and the activity of myoglobin and hemoglobin adsorbed on silica nanoparticles, we tried to define the state of an adsorbed protein. The structural study, based on circular dichroism, fluorescence, infrared, X-ray and UV-visible spectroscopy and microcalorimetry, shows a substantial partial structure loss of adsorbed proteins together with a high conformational heterogeneity, without major modifications of the heme structure. Two potential interaction sites of myoglobin with silica nanoparticles have been identified by a footprinting technique. The study of adsorbed myoglobin dynamics by elastic and inelastic neutron scattering highlighted the important decrease of protein dynamics that occurs upon adsorption. However, despite the structure loss, adsorbed metmyoglobin retains almost all of its activity of ligand binding. Unexpectedly, adsorbed hemoglobin shows an increase of its oxygen affinity and a decrease of its cooperativity, without any dissociation of the tetramer. This effect can be reproduced on human hemoglobin, cross-linked DCL hemoglobin and variant S hemoglobin. Besides, two effectors allow modulating the affinity of adsorbed hemoglobin. Despite the extent of structural and activity changes, all these modifications are entirely reversible upon desorption in soft conditions. The adsorption of hemoproteins on silica nanoparticles depicts a new sort of stress with resilience for proteins in terms of structure, dynamics and activity relationship.
60

Protein dynamics: a study of the model-free analysis of NMR relaxation data

d'Auvergne, Edward J. Unknown Date (has links) (PDF)
The model-free analysis of NMR relaxation data, which is widely used for the study of protein dynamics, consists of the separation of the Brownian rotational diffusion from internal motions relative to the diffusion frame and the description of these internal motions by amplitude and timescale. Through parametric restriction and the addition of the Rex parameter a number of model-free models can be constructed. The model-free problem is often solved by initially estimating the diffusion tensor. The model-free models are then optimised and the best model is selected. Finally, the global model of all diffusion and model-free parameters is optimised. These steps are repeated until convergence. This thesis will investigate all aspects of the model-free data analysis chain. (For complete abstract open document)

Page generated in 0.0706 seconds