231 |
Development of a Novel Selection Method for Protease Engineering : A high-throughput fluorescent reporter-based method for characterization and selection of proteasesHendrikse, Natalie January 2016 (has links)
Proteases are crucial to many biological processes and have become an important field of biomedical and biotechnological research. Engineering of proteases towards therapeutic applications has been limited due to the lack of high-throughput methods for characterization and selection. We have developed a novel high-throughput method for quantitative assessment of proteolytic activity in the cytoplasm of Escherichia coli bacterial cells. The method is based on coexpression of a protease of interest and a reporter complex consisting of an aggregation-prone protein fused to a fluorescent reporter. Cleavage of a substrate sequence situated between the two reporter complex proteins results in increased whole-cell fluorescence proportional to proteolytic activity, which can be monitored using flow cytometry. We have demonstrated that the method can distinguish efficiencies with which Tobacco Etch Virus (TEV) protease processes different substrates. We believe that this is the first method in the field of protease engineering that enables simultaneous measurement of proteolytic activity and protease expression levels and can therefore be applied for substrate profiling, as well as screening and selection of libraries of engineered proteases.
|
232 |
Exploring the potential of transaminases in aqueous organic solvent solutions through protein engineering: a resource to optimise the synthesis of chiral aminesFasol, Silvia January 2014 (has links)
No description available.
|
233 |
Early Folding Biases in the Folding Free-Energy Surface of βα-Repeat Proteins: A DissertationNobrega, Robert P. 25 July 2014 (has links)
Early events in folding can determine if a protein is going to fold, misfold, or aggregate. Understanding these deterministic events is paramount for de novo protein engineering, the enhancement of biopharmaceutical stabilities, and understanding neurodegenerative diseases including amyotrophic lateral sclerosis and Alzheimer's disease. However, the physicochemical and structural biases within high energy states of protein biopolymers are poorly understood.
A combined experimental and computational study was conducted on the small β/α-repeat protein CheY to determine the structural basis of its submillisecond misfolding reaction to an off-pathway intermediate. Using permutations, we were able to discriminate between the roles of two proposed mechanisms of folding; a nucleation condensation model, and a hydrophobic collapse model driven by the formation of clusters of isoleucine, leucine, and valine (ILV) residues. We found that by altering the ILV cluster connectivity we could bias the early folding events to either favor on or off-pathway intermediates.
Structural biases were also experimentally observed in the unfolded state of a de novo designed synthetic β/α-repeat protein, Di-III_14. Although thermodynamically and kinetically 2-state, Di-III_14 has a well structured unfolded state that is only observable under native-favoring conditions. This unfolded state appears to retain native-like structure, consisting of a hydrophobic 7 core (69% ILV) stabilized by solvent exposed polar groups and long range electrostatic interactions.
Together, these results suggest that early folding events are largely deterministic in these two systems. Generally, low contact order ILV clusters favor local compaction and, in specific cases, long range electrostatic interactions may have stabilizing effects in higher energy states.
|
234 |
Exploring the Mechanism of Paraoxonase-1: Comparative and Combinatorial Probing ofthe Six-bladed β-propeller Hydrolase Active SitesGrunkemeyer, Timothy John 28 August 2019 (has links)
No description available.
|
235 |
Engineering of a NIR fluorescent protein for live-cell nanoscopyHabenstein, Florian 01 September 2021 (has links)
No description available.
|
236 |
Pathogenic peptides to enhance treatment of glioblastoma: evaluation of RVG-29 from rabies virus and chlorotoxin from scorpion venomJanuary 2019 (has links)
abstract: Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of treatments for GBM. The blood-brain barrier (BBB) serves as a primary obstacle due to its innate ability to prevent unwanted molecules, such as most chemotherapeutics, from entering the brain tissue and reaching malignant cells. The GBM cells themselves serve as a second obstacle, having a high level of genetic and phenotypic heterogeneity. This characteristic improves the probability of a population of cells to have resistance to treatment, which ensures the survival of the tumor. Here, the development and testing of two different modes of therapy for treating GBM is described. These therapeutics were enhanced by pathogenic peptides known to improve entry into brain tissue or to bind GBM cells to overcome the BBB and/or tumor cell heterogeneity. The first therapeutic utilizes a small peptide, RVG-29, derived from the rabies virus glycoprotein to improve brain-specific delivery of nanoparticles encapsulated with a small molecule payload. RVG-29-targeted nanoparticles were observed to reach the brain of healthy mice in higher concentrations 2 hours following intravenous injection compared to control particles. However, targeted camptothecin-loaded nanoparticles were not capable of producing significant treatment benefits compared to non-targeted particles in an orthotopic mouse model of GBM. Peptide degradation following injection was shown to be a likely cause for reduced treatment benefit. The second therapeutic utilizes chlorotoxin, a non-toxic 36-amino acid peptide found in the venom of the deathstalker scorpion, expressed as a fusion to antibody fragments to enhance T cell recognition and killing of GBM. This candidate biologic, known as anti-CD3/chlorotoxin (ACDClx) is expressed as an insoluble protein in Nicotiana benthamiana and Escherichia coli and must be purified in denaturing and reducing conditions prior to being refolded. ACDClx was shown to selectively activate T cells only in the presence of GBM cells, providing evidence that further preclinical development of ACDClx as a GBM immunotherapy is warranted. / Dissertation/Thesis / Doctoral Dissertation Biological Design 2019
|
237 |
Investigating protein folding by the de novo design of an α-helix oligomerPhan, Jamie 01 January 2013 (has links)
Proteins are composed of a unique sequence of amino acids, whose order guides a protein to adopt its particular fold and perform a specific function. It has been shown that a protein's 3-dimensional structure is embedded within its primary sequence. The problem that remains elusive to biochemists is how a protein's primary sequence directs the folding to adopt such a specific conformation. In an attempt to gain a better understanding of protein folding, my research tests a novel model of protein packing using protein design. The model defines the knob-socket construct as the fundamental unit of packing within protein structure. The knob-socket model characterizes packing specificity in terms of amino acid preferences for sockets in different environments: sockets filled with a knob are involved in inter-helical interactions and free sockets are involved in intra-helical interactions. Equipped with this knowledge, I sought to design a unique protein, Ksα1.1, completely de novo. The sequence was selected to induce helix formation with a predefined tertiary packing interface. Circular dichroism showed that Ksα1.1 formed α-helical secondary structure as intended. The nuclear magnetic resonance studies demonstrated formation of a high order oligomer with increased protein concentration. These results and analysis prove that the knob-socket model is a predictive model for all α-helical protein packing. More importantly, the knob-socket model introduces a new protein design method that can potentially hold a solution to the folding problem.
|
238 |
Protein Engineering Studies on Structure and Function of Thermolysin, Matriptase, and Hepatocyte Growth Factor Activator Inhibitor Type 1 / サーモライシン、マトリプターゼおよび肝細胞増殖因子活性化因子阻害物質タイプ1の構造と機能に関するタンパク質工学的研究Kojima, Kenji 25 November 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第12878号 / 論農博第2805号 / 新制||農||1028(附属図書館) / 学位論文||H26||N4877(農学部図書室) / 31596 / (主査)教授 保川 清, 教授 安達 修二, 教授 伏木 亨 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
239 |
Studies on the thermostabilization of reverse transcriptases from Moloney murine leukemia virus and avian myeloblastosis virus / モロニーマウス白血病ウイルス逆転写酵素およびトリ骨髄芽球症ウイルス逆転写酵素の耐熱化に関する研究Konishi, Atsushi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19016号 / 農博第2094号 / 新制||農||1029(附属図書館) / 学位論文||H27||N4898(農学部図書室) / 31967 / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 保川 清, 教授 河田 照雄, 教授 谷 史人 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
240 |
Production and characterization of alternative scaffold proteins for medical applications / Produktion och karaktärisering av alternativa scaffold proteins för medicinska applikationerKnave, Axel January 2020 (has links)
Antibodies, as forerunners in the field of biological drugs, are originally an organism’s answer to the invasion of different pathogens. Today, antibodies are a common treatment for many chronic diseases such as the immune-mediated inflammatory diseases rheumatoid arthritis or psoriasis. It is suspected that the cytokines interleukin 17a (IL17a) and interleukin 17c (IL17c) are involved in those diseases and are commonly treated with antibodies that inhibit the cytokines. Even though antibodies have been a huge success as biological drugs they also have downsides when it comes to their production, size and stability. In quest of finding alternatives to antibodies in diagnostics and therapy, a novel class of biologics has been developed. So-called alternative scaffold proteins are small polypeptide chains that can be engineered to show affinity towards different biomarkers. ABD-Derived Affinity ProTeins or ADAPTs are one example of these alternative scaffolds that can be modified to bind a biomarker as target and keep their affinity to Human Serum Albumin (HSA) at the same time, making them bispecific. In this project, twenty-four previously selected ADAPT binder candidates that have shown good prospects towards IL17a and IL17c in previous experiments were cloned, produced, purified and characterized to determine if they show potential as tools in diagnostics or therapy of autoimmune diseases. The proteins were produced in E. coli, purified by affinity chromatography and characterized using Surface Plasmon Resonance (SPR), Circular Dichroism (CD) and Size Exclusion Chromatography (SEC). All candidates were successfully cloned into E. coli and out of these, 10 could be produced and 5 showed affinity towards their target using SPR. Examination by SEC and CD showed that the protein variants did not seem to be structurally stable and hints of impurities in the samples could be detected. This and a low yield could be further confirmed via SDS-PAGE. In conclusion, binders were produced that could theoretically be promising candidates as tools in diagnostics or therapy of chronic diseases were IL17a and/or IL17c are important. Nevertheless, in order to support these claims further investigations and developments are necessary. / Antikroppar, som föregångare inom området biologiska läkemedel, är ursprungligen en organisms svar på invasionen av olika patogen. Idag är antikroppar en vanlig behandling för många kroniska sjukdomar, såsom de immunmedierade inflammatoriska sjukdomarna reumatoid artrit eller psoriasis. Cytokinerna interleukin 17a (IL17a) och interleukin 17c (IL17c) tros vara involverade i dessa sjukdomar och behandlas vanligtvis med antikroppar som hämmar cytokinerna. Trots att antikroppar har varit en stor framgång som biologiska läkemedel har de också nackdelar när det gäller deras produktion, storlek och stabilitet. För att hitta alternativ till antikroppar inom diagnostik och terapi har en ny klass av biologiska läkemedel utvecklats. Så kallade alternative scaffold proteins är små polypeptidkedjor som kan manipuleras för att visa affinitet gentemot olika biomarkörer. ABD-Derived Affinity ProTeins eller ADAPTs är ett exempel på dessa alternative scaffolds som kan modifieras för att binda en biomarkör som mål utan att påverka affiniteten till Humant Serum Albumin (HSA), vilket gör dem bispecifika. I detta projekt klonades, producerades, renades och karakteriserades tjugofyra tidigare utvalda ADAPT-bindarkandidater som har visat goda förutsättningar gentemot IL17a och IL17c i tidigare experiment. Proteinerna producerades i E. coli, renades genom affinitetskromatografi och karakteriserades med användning av Surface Plasmon Resonance (SPR), Circular Dichroism (CD) och Size Exclusion Chromatography (SEC). Alla kandidater klonades framgångsrikt i E. coli och av dessa kunde 10 produceras. Fem bindare visade affinitet till deras mål med SPR. Undersökning med SEC och CD visade dock att proteinvarianterna inte var strukturellt stabila och antydan till föroreningar kunde detekteras i proverna. Detta och ett lågt utbyte kunde ytterligare bekräftas via SDS-PAGE. Sammanfattningsvis kunde bindare producerades och dessa kan teoretiskt vara lovande kandidater till diagnostik eller terapi av kroniska sjukdomar där IL17a och/eller IL17c är viktiga. För att stödja dessa påståenden krävs dock ytterligare experiment och utveckling av bindarna.
|
Page generated in 0.0874 seconds