1 |
Expression of penicillin-binding protein 3 in Escherichia coliMcNicholas, Paul Martin January 1989 (has links)
No description available.
|
2 |
Analysis of pullulanase secretion from Klebsiella pneumoniae strain K21Kornacker, Michael Gilbert January 1988 (has links)
Strains of the Gram-negative bacterium Klebsiella pneumoniae secrete pullulanase, a maltose-inducible starch debranching enzyme that exists as a cell surface bound intermediate. Three classes of secretion mutants were obtained by transposon In 10 mutagenesis. Class I and class III mutants carry Tn10 insertions in pullulanase secretion genes. Class II mutants carry insertions in regulatory loci that are required for the high level expression of pullulanase and other maltose-inducible genes (the maltose regulon). One such locus appears to correspond to a previously unknown locus. The phenotypes of the secretion mutants and the analysis of E.coli expressing pullulanase and/or cloned pullulanase secretion genes suggest that pullulanase secretion functions are involved in translocating pullulanase across the outer membrane and in releasing it from the cell surface. Most if not all pullulanase secretion genes are located to both sides of the structural gene for pullulanase (pu1A). Pullulanase was found to be a lipoprotein. Surprisingly, secreted pullulanase also carried lipid. However, strain K21 differed from other strains of Klebsiella pneumoniae by its ability to secrete not only acylated pullulanase but also a second, unacylated form of pullulanase. Strain K21 is also unusual because of its ability to secrete most pullulanase during logarithmic growth. This pullulanase corresponds to the unacylated pullulanase, with the remaining secreted pullulanase being acylated and secreted during stationary phase, as is the case for most or all pullulanase of other strains of Klebsiella pneumoniae. Strain K21 is also unusual because of the high level expression of the maltose regulon, including pulA, in the absence of maltose. This property, including the unusual features described above, may be a consequence of the selection of strain K21 for high level commercial production of pullulanase. Models for pullulanase secretion are discussed and approaches towards increasing the efficiency of commercial pullulanase production by strain K21 are outlined.
|
3 |
Characterisation of the structure and function of the Salmonella flagellar export gate protein, FlhBBergen, Paul Michael January 2017 (has links)
Flagella, the helical propellers that extend from the bacterial cell surface, illustrate how complex nanomachines assemble outside the cell. The sequential construction of the flagellar rod, hook, and filament requires export of thousands of structural subunits across the cell membrane and this is achieved by a specialised flagellar Type III Secretion System (fT3SS) located at the base of each flagellum. The fT3SS imposes a crude ordering of subunits, with filament subunits only exported once the rod and hook are complete. This “export specificity switch” is controlled by the FlhB component of the fT3SS export gate in response to a signal from the exported molecular ruler FliK, which monitors the length of the growing hook. This study seeks to clarify how rod and hook subunits interact with FlhB, and how FlhB switches export specificity. Rod and hook subunits possess a conserved gate recognition motif (GRM; Fxxxφ, with φ being any hydrophobic residue) that is proposed to bind a surface-exposed hydrophobic patch on the FlhB cytosolic domain. Mutation of the GRM phenylalanine and the final hydrophobic residue resulted in impaired subunit export and decreased cell motility. Isothermal titration calorimetry was performed to assess whether subunit export order is imposed at FlhB. These experiments showed that rod and hook subunits bind to FlhB with micromolar dissociation constants (5-45 μM), suggesting transient interactions. There was no clear correlation between subunit affinity for FlhB and the order of subunit assembly in the nascent flagellum. Solution-state nuclear magnetic resonance (NMR) spectroscopy supported prior data showing that rod and hook subunits interact with FlhB’s surface-exposed hydrophobic patch. NMR also indicated that residues away from the patch undergo a conformational change on subunit binding. FlhB autocleaves rapidly in its cytosolic domain, and the resulting polypeptides (FlhBCN and FlhBCC) are held together by non-covalent interactions between b-strands that encompass the autocleavage site. The autocleavage event is a prerequisite for the export specificity switch, but its function is unclear. Analysis of the cellular localization of FlhBCN and FlhBCC revealed that FlhBCC dissociated from the membrane export machinery, but only in the presence of FliK. Biochemical and biophysical studies of FlhB variants that undergo export specificity switching in the absence of FliK showed that these FlhB “autonomous switchers” were less stable than wildtype FlhB and their FlhBCC domain could dissociate from the export machinery in the absence of FliK. The results suggest that the export specificity switch involves a FliK-dependent loss of FlhBCC from the export machinery, eliminating the binding site for rod and hook subunits.
|
4 |
Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'emHutchings, M.I., Palmer, T., Harrington, Dean J., Sutcliffe, I.C. 12 June 2008 (has links)
No / Gram-positive bacterial lipoproteins are a functionally diverse and important class of peripheral membrane proteins. Recent advances in molecular biology and the availability of whole genome sequence data have overturned many long-held assumptions about the export and processing of these proteins, most notably the recent discovery that not all lipoproteins are exported as unfolded substrates through the general secretion pathway. Here, we review recent discoveries concerning the export and processing of these proteins, their role in virulence in Gram-positive bacteria and their potential as vaccine candidates or targets for new antimicrobials. / Biotechnology and Biological Sciences Research Council (grant numbers F009224/1, F009429/1, EGH16082), the Medical Research Council (MRC), the Commission of the European Community (grant LSHG-CT-2004–005257) and The Royal Society.
|
5 |
Deciphering the Mechanism of E. coli tat Protien Transport: Kinetic Substeps and Cargo PropertiesWhitaker, Neal William 1982- 14 March 2013 (has links)
The Escherichia coli twin-arginine translocation (Tat) system transports fully folded and assembled proteins across the inner membrane into the periplasmic space. The E. coli Tat machinery minimally consists of three integral membrane proteins: TatA, TatB and TatC. A popular model of Tat translocation is that cargo first interacts with a substrate binding complex composed of TatB and TatC and then is transported across the inner membrane through a channel comprised primarily of TatA.
The most common method for observing the kinetics of Tat transport, a protease protection assay, lacks the ability to distinguish between individual transport sub-steps and is limited by the inability to observe translocation in real-time. Therefore, a real-time FRET based assay was developed to observe interactions between the cargo protein pre-SufI, and its initial binding site, the TatBC complex. The cargo was found to first associate with the TatBC complex, and then, in the presence of a membrane potential (∆psi), migrate away from the initial binding site after a 20-45 second delay. Since cargo migration away from the TatBC complex was not directly promoted by the presence of a ∆psi, the delay likely represents some preparatory step that results in a transport competent translocon.
In addition, the Tat system has long been identified as a potential biotechnological tool for protein production. However, much is still unknown about which cargos are suitable for transport by the Tat system. To probe the Tat system’s ability to transport substrates of different sizes and shapes, 18 different cargos were generated using the natural Tat substrate pre-SufI as a base. Transport efficiencies for these cargos indicate that not only is the Tat machinery’s ability to transport substrates determined by the protein’s molecular weight, as well as by its dimensions.
In total, these results suggest a dynamic translocon that undergoes functionally significant, ∆psi-dependent changes during translocation. Moreover, not every protein cargo can be directed through the Tat translocon by a Tat signal peptide, and this selectivity is not only related to the overall size of the protein, but also dependent on shape.
|
6 |
Modulation of Protein Stability and Function by Cysteine Mutations and Signal PeptidesSharma, Likhesh January 2016 (has links) (PDF)
Chapter 1gives a general introduction to the CXXC motif found in natural proteins. It then reviews the studies where disulphides were engineered in various proteins. The various strategies developed to engineer metal binding activity and redox activity are described. The objectives behind engineering the CXXC motif into a protein, such as imparting it novel metal-binding and redox activities, are discussed next. Alternative strategies which achieve the same objectives are described as well. This chapter then introduces the model proteins used in the course of this thesis: maltose-binding protein (MBP) and E. coli. Thioredoxin (Trx). This chapter also briefly discusses the role of signal peptide in protein export.
Chapter 2describes the experimental studies and their results in which we introduced the widely occurring cysteine motif CXXC into the maltose binding protein (one-at-a-time, in five alpha-helices, at the N-termini) to test three hypotheses: 1) Does a disulphide bond form at the N-terminus? 2) Does the protein acquire any oxido-reductase activity? 3) Does it acquire new metal-binding properties?
The results confirmed: 1) Each cysteine pair forms a stable intrahelical disulphide bond under non-reducing conditions. 2) The five mutant proteins acquire considerable oxidoreductase activity, tested by the insulin aggregation assay. 3) The mutants acquire novel metal-binding properties for Ni2+, Cd2+, and Zn2+ upon reduction. Further, introducing the CXXC motif neither destabilizes the protein nor affects its global structure.
Our results demonstrated that introduction of CXXC motifs can be used to probe alpha-helix start sites and to introduce oxidoreductase and metal binding functionality into proteins.
Chapter 3describes further experimentson a few of the metal ion binding mutants discussed in the previous chapter. We explore the effect and usefulness of reducing agents (DTT and TCEP) on the binding of metal salts to the CXXC mutants. We also studied the explore of metal salts on the thermal stability of the mutants and show that metal ions bind to the CXXC motif even when the protein is in the unfolded state. The chapter describes the use of an immobilized metal affinity chromatography (IMAC) based method for the purification of MBP mutants.Yields ranging from 60-85% were obtained for thethree MBP mutants. The cysteines were located at different positions in thesethree MBP mutants (MBP 42-45 Cys, MBP 128-131 Cys, and MBP 359-359 Cys mutants). The yields for wild-type MBP, a single cysteine mutant (MBP S211C), a double cysteine mutant (MBP 230, 30) were all below 15%. Chapter 3 also reports a new crystal structure of the MBP356-359 mutant in ligand bound form:it crystallizes as an intermolecular dimer, bonded by two disulfides formed by the cysteines of the CXXC motif.
Chapter 4describes the effects of inserting signal peptide sequences on protein folding and expression. We fused the malE and pelB signal sequences at the N-terminus of the model protein thioredoxin and observed that the wild-type and pelB fusion constructs are soluble when expressed, but the malE construct was targeted to inclusion bodies. Nonetheless, it could be refolded in vitro to yield a monomeric product with a secondary structure identical to the wild-type thioredoxin. This chapter also details the thermodynamic stability, aggregation propensity and activity of the purified recombinant proteins in comparison with the wild-type thioredoxin. The presence of the signal sequences reduces the thermodynamic stability and activity of the recombinants and increases their aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, different signal sequences affect protein stability and aggregation differently.
Chapter 5describes three different strategies to label a protein at different sites with cysteine-specific fluorophores using MBP as the model. The first strategy exploits the differential accessibility of residues within MBP in its maltose-bound and maltose-free states. The second strategy involves insertion of a 14-amino-acid loop called V3 from the HIV gp120 protein into MBP; anti-V3 antibodies shield the cysteine residue present inside the inserted loop, while we label another cysteine present outside the loop. In the third strategy, we introduce a third cysteine residue onto the background of the MBP mutant already containing a disulphide bridge at the N-terminus of one of its helices (discussed in Chapter 2). We label the third, free cysteine while the cysteines involved in the disulphide bridge remain protected. We observed successful differential labelling using the first strategy and also observed FRET between the fluorophore labels. Similarly, after trying the second strategy we could individually label all the mutants except one. The third strategy based on the triple-cysteine mutant was not successful because the fluorophore we chose (DBM) did not show site specificity and instead labelled all three cysteines. In addition, the triple-cysteine mutant did not even show disulphide-bridge formation.We showed that indeed the V3 loop inserted in MBP binds anti-V3 antibodies and we could individually label all the mutants expect D41C. The third strategy was not successful because unfortunately in the triple cysteine mutant, the fluorophore we chose (DBM) did not show site specificity and labeled all three cysteines. In addition, the disulfide bridge was not found to be present in the triple cysteine mutant.
Chapter 6discusses the synthesis, characterization and binding of various maltolipids, (and their corresponding maltose-free controls) to MBP. The maltolipids were synthesised with varying linker lengths and anchor- & head-groups and then used to prepare liposomes and micelles. Although both liposomal and micellar forms could bind to MBP, only the micelles were screened subsequently for their ability to bind to MBP. The binding was assessed using various techniques such as fluorescence spectroscopy, gel filtration and thermal stability assay. We screened the maltolipids and determined how their anchor group, linker length and charge on the head group influences the binding of MBP to micelles formed by these maltolipids.
|
7 |
Pre-clinical evaluation and improvement of attenuated malaria sporozoite vaccine candidatesKreutzfeld, Oriana 16 January 2020 (has links)
Malaria Impfstoffkandidaten, welche Sicherheit und Wirksamkeit gegen prä-erythrozytische Stadien bieten, sind nach wie vor in der Entwicklung. Experimentelle Immunisierungsstudien mit genetisch attenuierten Parasiten (GAP), welche die Entwicklung über das klinisch asymptomatische Leberstadium hinaus verhindern, erwiesen sich als sicher und effizient. ΔSLARP GAP-Sporozoiten arretieren vollständig in der Leber, bieten jedoch keinen langanhaltenden Schutz. Hingegen zeigen Immunisierungen mit ΔP36p/P36 Sporozoiten einen langanhaltenden Schutz, führen jedoch während der Immunisierung gelegentlich zu Blutstadieninfektionen. Diese Studie liefert eine systematische vorklinische Bewertung eines dreifachen KO GAP-Parasiten, durch die Kombination von ΔSLARP und ΔP36p/P36. KO Parasiten arretierten vollständig in vitro und in vivo, aber der zeitnahe Blutinfektionsbeginn nach einer Sporozoiteninfektion in Mäusen zeigte eine verminderte Wirksamkeit des Impfstoffs. Während ein besserer Schutz durch einen späten Leberstadien Entwicklungsstillstand erreicht werden kann, bleiben die zugrundeliegenden molekularen Mechanismen unklar. Eine Vorrausetzung für die Leberzellen Antigenpräsentation ist die Präsenz von parasitären Antigenen im hepatozyten Zytoplasma. Der Proteinexportkomplex PTEX ist in Leberstadien nicht vollständig funktionstüchtig, da das essentielle Hitzeschockprotein 101 (HSP101) nicht exprimiert wird. Um die Rolle von HSP101 für den Leberproteinexport zu klären, wurden transgene HSP101 exprimierende Parasiten erzeugt. Transgene Parasiten weisen in vitro und in vivo schwere Wachstumsstörungen im Leberstadium auf und bieten keinen Impfschutz. Die Ergebnisse legen nahe, dass die Expression von HSP101 streng kontrolliert wird und der Export im frühen Leberstadien nicht wiederhergestellt werden kann. Insgesamt können prä-klinische Studien und die Weiterentwicklung von GAP-basierten Impfstoffkandidaten die laufenden humanen Impfstoffstudien beeinflussen und vorantreiben. / Malaria vaccine candidates providing both safety and efficacy against pre-erythrocytic stages remain largely elusive. Experimental immunizations with live genetically attenuated parasites (GAPs) preventing the development beyond the clinically silent liver stage have proven safe and efficacious. GAP vaccine candidate ΔSLARP, provides the most robust life cycle arrest, however, immunizations do not elicit long-lasting immunity. In contrast, ΔP36p/P36 sporozoites elicit long-lasting immunity, but lead to breakthrough infections during immunizations. This study gives a systematic pre-clinical evaluation of a triple knockout (tKO) GAP by combining ΔSLARP and ΔP36p/P36. Complete arrest of tKO parasites in cultured hepatoma cells and sporozoite-infected mice was confirmed, but time to blood infection after a sporozoite challenge revealed reduced efficacy of the tKO vaccine. While superior immunity can be achieved by a late developmental arrest at liver-to-blood stage conversion, the underlying molecular mechanisms remain elusive. An important question is whether parasite antigens are exposed to the hepatocyte cytoplasm. Protein translocation into the host cell cytoplasm mediated by PTEX, a protein translocon, is absent during liver stage maturation as a core component of PTEX, Heat-shock-protein 101 (HSP101), is not expressed. To clarify the role of HSP101 in liver stage protein export transgenic HSP101 expressing Plasmodium berghei parasites were generated. Parasites expressing elevated levels of HSP101 show severe liver stage growth defects in vitro and in vivo, lack early liver stage export and inferior protection in immunized animals. Our results suggest that HSP101 expression is tightly controlled and PTEX dependent early liver stage export cannot be restored solely by HSP101 overexpression. Overall, pre-clinical analysis and improvement of GAP-based vaccine candidates can inform on-going human vaccine trials and boost malaria vaccine development.
|
8 |
Exposition von Proteinen auf der Oberfläche von Escherichia coli Zellen: mechanistische Betrachtung und biotechnologische Anwendung / Exposition of proteins on the surface of Escherichia coli cells: mechanistic consideration and biotechnological applicationWentzel, Alexander 07 May 2003 (has links)
No description available.
|
9 |
Unfolded Protein Response in Malaria ParasiteChaubey, Shwetha January 2014 (has links) (PDF)
Plasmodium falciparum is responsible for the most virulent form of human malaria. The biology of the intra-erythrocytic stage of P. falciparum is the most well studied as it is this stage that marks the clinical manifestation of malaria. To establish a successful infection, P. falciparum brings about extensive remodeling of erythrocytes, its host compartment. The infected erythrocytes harbor several parasite induced membranous structures. Most importantly, pathogenesis related structures termed knobs, which impart cytoadherence, appear on the cell surface of the infected erythrocytes. For bringing about such eccentric renovations in its host compartment, the parasite exports 8% of its genome (~400 proteins) to various destinations in the host cell. Studies from our lab have shown that proteins belonging to heat shock protein40 (Hsp40) and heat shock protein70 (Hsp70) group of chaperones are also exported to the host compartment. We and others have implicated these chaperones in important processes such as protein trafficking and chaperoning assembly of parasitic proteins into the cytoadherent knobs.
As detailed above, malaria parasite invests a lot of energy in exporting a large number of proteins including chaperones in the red blood cell to meet its pathogenic demands. In order to do so, it heavily relies on its secretory pathway. However, it is known that the parasite experiences a significant amount of oxidative stress on account of heme detoxification, its own metabolism and the immune system of the host. The parasite also effluxes large quantities of reduced thiols such as glutathione and homocysteine into the extracellular milieu indicative of redox perturbation. Additionally, the parasite lacks Peroxiredoxin IV, which otherwise localizes in the ER and carries out detoxification of peroxide generated as a result of oxidative protein folding. Together, these factors indicate that maintaining redox homeostasis is a challenging task for the parasite. It also implies that the ER, where the redox balance is even more critical as it requires oxidising environment for protein folding, is predisposed to stress. In light of this fact and the importance of secretory pathway in malaria pathogenesis, we decided to address the ways and mechanisms used by the parasite to tackle perturbations in its secretory pathway.
Examination of a canonical unfolded protein response pathway in P. falciparum
ER-stress is a condition arising whenever the load of unfolded proteins increases the folding capacity of the ER. However, eukaryotes have evolved a fairly well conserved homeostatic response pathway known as unfolded protein response (UPR) to tackle ER-stress. This signal transduction pathway is composed of three arms involving three ER-transmembrane signal transducers namely; IRE1, ATF6 and PERK. IRE1 brings about splicing of a bZIP transcription factor, XBP1/Hac1 and ATF6 becomes activated upon getting proteolytically cleaved in the Golgi. These transcription factors then migrate to the nucleus where they bind onto the ER-stress elements thereby, leading to the transcriptional up-regulation of the UPR targets such as ER chaperones and components of ER associated degradation (ERAD) pathway which rescue the function of the ER. PERK on the other hand brings about translational attenuation by phosphorylating eIF2α, thereby providing parasite the benefit of time to recover.
We started our examination on UPR in Plasmodium by carrying out in silico analysis of the major components of UPR in the parasite by using Homo sapiens protein sequences as the query. We found that the parasite lacks the homologues of all the transcriptional regulators of canonical UPR. Only PERK component of the UPR was found to be present in the parasite. To rule out the existence of the canonical UPR in P. falciparum, we examined the status of UPR targets by subjecting the parasites to treatment with DTT. DTT perturbs the disulfide oxidation in the ER and thereby inhibits protein folding leading to ER-stress. Owing to the missing components of a canonical UPR, we did not find up-regulation of known UPR targets such as ER-chaperones including PfBiP, PfGrp94, PfPDI and ERAD marker Derlin1 at transcript as well as protein level. Owing to the presence of a PERK homologue, phosphorylation of eIF2α followed by attenuation of protein synthesis was observed upon subjecting the parasites to DTT mediated ER-stress. In the absence of a canonical UPR, the parasites were found to be hypersensitive to ER-stress in comparison to the mammalian counterpart. In the presence of DTT, the parasites showed perturbation in the redox homeostasis as indicated by increase in the levels of ROS.
Next, we sought to examine if the parasites resorted to any alternate means of increasing the availability of chaperones in the ER. For this, we analysed the involvement of another Hsp70 family member, Hsp70-x which is homologous to BiP and which is known to traverse the ER while getting exported to the erythrocyte compartment. Interestingly, we found that upon exposure to ER-stress, the export of this protein is partially blocked and around 30% of the protein is retained in the ER. On the other hand, there was no effect on the trafficking of another exported chaperone KAHsp40. This indicates that the parasite possibly recruits this pool of retained Hsp70-x for the chaperoning of unfolded proteins in the ER.
Global response to ER-stress in P. falciparum
To dig deeper into the parasite specific strategies employed for dealing with ER-stress at a global level, we carried out high throughput transcriptomic and proteomic analysis upon subjecting the parasites to DTT mediated ER-stress. Microarray based gene expression profiling was carried out upon subjecting the parasites to DTT mediated ER-stress. We found that the parasite mounts a transcriptional response as indicated by up-regulation of 155 transcripts. In congruence with our biochemical analysis, we did not find up-regulation of ER chaperones as well as ERAD proteins. Functional grouping of the up-regulated genes revealed large number of hypothetical proteins in our list of differentially expressed genes. The genes encoding exported proteins represent yet another abundant class.
In the course of examining the involvement of Plasmodium specific transcriptional regulators mediating response to DTT induced ER-stress, we identified 4 genes belonging to the family of AP2 transcription factors. AP2 (Apetela-2) are specific transcription factors which are possessed by apicomplexa and bring about regulation of developmental processes and stress response in plants. On comparing our list of up-regulated genes with the previously known targets of AP2 factors, we found that an entire cascade of AP2 factors is up-regulated upon DTT-mediated ER stress. Thus, AP2 factors appear to be the major stress response mediators as they are together responsible for the up-regulation of 60% of genes identified in this study. In addition, another striking observation made, was the up-regulation of a few sexual stage specific transcripts. 2D Gel electrophoresis and 2D-DIGE based Proteomic analysis indicated an up-regulation of secretory proteins and some components of vesicular trafficking and secretory machinery possibly to overcome the block in the functions of the secretory pathway.
ER-stress triggers stage transition in P. falciparum Intrigued by the up-regulation of a few sexual stage specific genes, we were curious to examine if there was a functional significance of this observation. To this end, we decided to investigate the effect of ER-stress on induction of gametocytes, the only sexual stage found in humans. Indeed, we found a two fold induction in the numbers of gametocytes formed upon challenging the parasite with DTT mediated ER-stress. The induction of gametocytogenesis was also observed by using a clinical isolate of P. falciparum for the assay. The DTT treated cultures progressed through the gametocytogenesis pathway normally forming all the five morphologically distinct stages. Then we sought to examine if this phenomenon could be simulated in the physiological scenario as well. For this, we made use of a rodent model of malaria, P. berghei. Two different treatment regimes involving 1) direct injection of increasing concentration of DTT into P. berghei infected mice and 2) injection of DTT pretreated P. berghei infected erythrocytes into healthy mice were followed. In both cases, a significant increase in the gametocyte induction was observed. Having seen that Plasmodium undergoes gametocytogenesis upon exposure to ER-stress not only in in vitro cultures but also in in vivo scenario, we wanted to identify the players involved in the commitment to sexual stage. Recently, a transcription factor belonging to AP2 class of transcription factors, referred to as AP2-G has been implicated in committing the asexual parasites for transition to gametocyte stage. To examine the role of this factor in the phenotype observed by us, we looked at the effect of DTT on AP2-G. Interestingly, we found around 6 folds up-regulation in the expression of AP2-G levels under ER-stress. The downstream targets of AP2-G, many of which are the markers of gametocyte were also found to be up-regulated upon being exposed to DTT mediated ER-stress indicating the launch of a transcriptional program which together works in the direction of transition to gametocytes. Having seen that P. falciparum undergoes ametocytogenesis in response to DTT treatment both under in vitro and in vivo conditions, we sought to look for probable physiological analogue of DTT. Since glutathione is the major cellular redox buffer, critical for redox homeostasis, we quantitated the levels of both oxidized and reduced forms of this non protein thiol using Mass Spectrometric approach. We found that the levels of reduced forms of glutathione significantly increased upon treating the parasites with DTT. This indicates that the levels of glutathione could be one of the physiological triggers of gametocytogenesis.
Conclusion
In conclusion, our study analyses the ways and mechanisms employed by malaria parasite to cope with perturbations to its secretory pathway. We have established the absence of a canonical UPR in this parasite and our results suggest that Plasmodium has developed a three stage response to cope with ER stress: 1) an early adaptation to increase the local concentration of chaperones in the ER by partially blocking the export of a Hsp70 family member, 2) activation of gene expression cascade involving AP2 transcription factors and 3) a consequent switch to the transmissible sexual stage. Hence, our study throws light on a novel physiological adaptation utilised by malaria parasite to tackle stress to its secretory pathway. Gametocytogenesis, which can be transmitted to the mosquito vector, could hence serve as an effective means to escape ER-stress altogether. Importantly, while it is widely known that stress brings about switch towards sexual stages in P. falciparum, the molecular triggers involved in this process remain obscure in the field of malaria biology. Therefore, our findings also address this long standing question by providing the evidence of ER-stress being one such trigger required for switching to the transmissible sexual stages.
|
Page generated in 0.0518 seconds