• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 12
  • 10
  • 5
  • 1
  • Tagged with
  • 79
  • 51
  • 43
  • 16
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Application of Growth Strata and Detrital-Zircon Geochronology to Stratigraphic Architecture and Kinematic History

Barbeau, David Longfellow Jr. January 2003 (has links)
Growth strata analysis and detrital-zircon geochronology are useful applications of stratigraphy to tectonic problems. Whereas both tools can contribute to kinematic analyses of supracrustal rock bodies, growth strata are also useful for analyzing the influence of tectonics on stratigraphic architecture. This study reports: 1) a conceptual model for growth strata development; 2) stratigraphic and kinematic analyses of growth strata architectures from growth structures in southeastern Utah, the Gulf of Mexico, and northeastern Spain; and 3) the detrital-zircon geochronology of the Salinian block of central coastal California. Kinematic sequence stratigraphy subdivides growth strata into kinematic sequences that are separated by kinematic sequence boundaries. Kinematic sequences can be further partitioned into kinematic domains based on the termination patterns of strata within a kinematic sequence. Salt- related fluvial growth strata from the Gulf of Mexico and southeastern Utah contain stratigraphic architectures that are unique to different kinematic domains. Offlap kinematic domains contain fluvial strata indicative of high slopes, low accommodation rates, and strong structural influence on paleocurrent direction. Onlap kinematic domains contain fluvial strata indicative of moderate slopes, high accommodation rates, and decreased structural influence on paleocurrent direction. The stratigraphic architecture of alluvial -fan thrust -belt growth strata in northeastern Spain does not display a marked correlation with kinematic domain, and is most easily interpreted using existing models for autocyclic alluvial -fan evolution. Detrital- zircon (U -Pb) geochronologic data from basement and cover rocks of Salinia suggest that Salinia originated along the southwestern margin of North America, likely in the vicinity of the Mojave Desert. The presence of Neoproterozoic and Late Archean detrital zircons in Salinian basement rocks also suggest that Salinian sediments were recycled from miogeoclinal sediments of the western margin of North America.
72

Iron-oxide and carbonate formation and transformations from banded iron formations 2.7 to 2.4 Ga / L'oxyde de fer et de carbonate de formation et des transformations à partir de formations de fer rubané 2,7 à 2,4 Ga

Morgan, Rachael 13 December 2012 (has links)
L’étude des formations de fer rubané (BIF) permet de comprendre les conditions des océans de et de l’atmosphère terrestres au cours de l’Archéen et du début du Protérozoïque. L’objectif de cette thèse est de fournir une analyse minéralogique et géochimique détaillée de BIFs de deux localités distinctes, séparées par la frontière Archéen-Protérozoïque. Une attention particulière est portée à la minéralogie de leurs carbonates et oxydes de fer. Les BIFs de 2,7 Ga de la formation Manjeri, Zimbabwe et de 2,4 Ga du Groupe Itabira, Brésil, ont dans les deux cas été précipités par mélange de fluides hydrothermaux marins oxygénés. Ceci est démontré par la présence d’inclusions de nano-hématite dans les lames de chert (Itabira et Manjeri) et de dolomite (Itabira seulement), qui sont interprétées comme la phase minérale la plus ancienne dans les échantillons. En outre, la microscopie électronique à transmission à faisceau d’ions focalisé (FIB-TEM) révèle la présence de plaquettes de nano ferrihydrite dans les BIF dolomitiques (carbonate d’itabirite). La dolomite est interprétée comme étant une phase primaire précipitée à des températures plus élevées (~100°C) de fluides hydrothermaux riches en CO2. Des anomalies positives en Eu dans les deux formations indiquent une composante hydrothermale, susceptible d’être la source du fer réduit. Les changements de faciès dans les deux unités sont le résultat de transgression/régression; et des évènements hydrothermaux post dépôt masquent les conditions primaires. Les carbonates riches en fer dans les deux faciès ont différentes origines: diagénétiques (Itabira) et hydrothermales post dépôt (Manjeri). Toutefois, les carbonates riches en fer des deux formations ont des valeurs négatives de ∂13C, ce qui indique qu’au moins une partie du carbone dans les carbonates est d’origine organique.Des analyses en balance de Curie dans le carbonate d’itabirite révèlent que la maghémite est le produit de transformation de la ferrihydrite lorsque de la dolomite se décompose à ~790°C. La maghémite a une température de Curie comprise entre 320 et 350°C et est stable jusqu’à une température de 925°C. Les analyses en FIB-TEM sur le processus de martitisation ont révélé deux mécanismes possibles à partir de deux échantillons de martite provenant respectivement du Brésil et d’Inde. En fonction de la cause de la martitisation, que nous avons déterminé être soit la déformation soit l’hydrothermalisme, la martitisation se produit respectivement par l’intermédiaire de:1. La réorganisation de défauts ponctuels, pour former des jumeaux. Ces défauts sont causés par les vacances dans la structure spinelle de la maghémite, dues à la suppression des ions Fe3+ en excès au cours de l’oxydation de la magnétite. C’est dans ce jumelage que le mécanisme de martitisation se produit.2. La migration des joints de grains par l’hématite au détriment de la magnétite, qui est due à la présence de fluide le long des interfaces du cristal. La maghémite se forme en raison de l’excès de Fe3+ produit pendant la martitisation de la magnétite, qui se déplace vers la surface des cristaux de magnétite. / It is the study of banded iron formations (BIFs) that provides understanding into the conditions of the Earth’s oceans and atmosphere during the Archean and Early Proterozoic. The aim of this thesis is to provide a detailed mineralogical and geochemical understand of BIFs from two separate localities separated by the Archean Proterozoic boundary. Close attention is paid to their carbonate and iron oxide mineralogy.The BIFs of the 2.7 Ga Manjeri Formation, Zimbabwe and 2.4 Ga Itabira Group, Brazil were both precipitated from oxygenated mixed marine-hydrothermal fluids. This is demonstrated by the presence of nano-hematite inclusions in the chert (Itabira and Manjeri) and dolomite (Itabira only) laminae, which is interpreted as the oldest mineral phase within the samples. Additionally, focused ion beam transmission electron microscopy (FIB-TEM) reveals the presence of nano ferrihydrite platelets within the dolomitic BIFs (carbonate itabirite). The dolomite is interpreted to be a primary phase precipitated at higher temperatures (~100°C) from CO2-rich hydrothermal fluids. Positive Eu anomalies in both formations indicate a hydrothermal component, likely to be the source of the reduced iron. Facies changes in both units are the result of transgression/regression and post depositional hydrothermal events mask primary conditions. Iron-rich carbonates in both facies have different origins; diagenetic (Itabira) and post depositional hydrothermal (Manjeri). However, the iron-rich carbonates of both formations have negative ∂13C values, indicating that at least part of the carbon in the carbonates is of organic origin. Curie Balance analyses into the carbonate itabirite reveals that maghemite is the transformation product of the ferrihydrite when dolomite decomposes at ~790°C. The maghemite has a Curie temperature between 320 and 350°C and is stable up to temperatures of 925°C.FIB-TEM investigations into the martitisation process revealed two possible mechanisms from two martite samples, from Brazil and India. Depending of the cause of the martitisation, here found to be deformation and hydrothermalism, the martitisation occurs respectively via either: 1. Ordering of point defects caused by vacancies in the spinel structure of maghemite, due to the removal of excess Fe3+ ions during the oxidation of magnetite, to form twins. It is in this twinning that the martitisation mechanism occurs.2. Grain boundary migration by hematite at the expense of magnetite is due to the presence of fluid along the crystal interfaces, where maghemite forms due to excess Fe3+ produced during martitisation of the magnetite, moving towards the surface of the magnetite crystals.
73

The formation of authigenic xenotime in Proterozoic sedimentary basins : petrography, age and geochemistry

Vallini, Daniela Alessandra January 2006 (has links)
[Truncated abstract] The realization in 1999 that the authigenic phosphate, xenotime, could be used in geochronological studies to place age constraints on burial events that affected sedimentary basins has opened numerous opportunities for establishing timeframes for sedimentary basin analysis. Since then, the mineral has been used to place new and novel age constraints on diagenesis, metamorphism, and hydrothermal alteration and mineralization events. Whilst these studies were successful, they identified many complexities in xenotime growth and were restricted to specific areas or single basins: they do not convey, demonstrate or explore the immense variety of geological applications in which xenotime may provide unique geochronological constraints. This thesis explores the nature of authigenic xenotime, utilizing studies in three different Proterozoic sedimentary basins: two in Australia, southwestern Australia and the Northern Territory, and the third in the United States of America. The thesis includes a number of discrete studies demonstrating different aspects of xenotime growth, elucidated from detailed petrography, geochronology and geochemistry of authigenic xenotime. An integrated textural, geochemical and geochronological study of authigenic xenotime from the Mt Barren Group, SW Australia, establishes an absolute timescale on some of the many processes involved during the diagenesis of siliciclastic units. ... positions and trends and broadly confirm the chemical discrimination criteria established for an Archaean basin. However, the Proterozoic data are shifted to lower Gd-Dy values and extend beyond the original field outlines, causing more overlap between fields intended to discriminate xenotimes of different origin. The plots were revised to encompass the new data. This study has significantly extended our knowledge of the nature of authigenic xenotime. It was found that xenotime may form in (meta)sediments in response to a large number of post-depositional processes, including early- and latediagenesis, (multiple) basinal hydrothermal events and low-grade metamorphism. A combination of detailed petrography and in situ geochronology provides the best avenue to decipher complex growth histories in xenotime. With further development, it is likely that xenotime geochemistry will also prove diagnostic of origin and can be incorporated into the interpretation of age data. The number of potential applications for xenotime geochronology has been expanded by this study.
74

Les associations de roches basiques - ultrabasiques néoprotérozoïques d'Amalaoulou (Gourma, Mali), du Tassendjanet (Hoggar occidental, Algérie) et cénozoïques du Saghro (Anti-Atlas, Maroc): témoins de l'évolution géodynamique de la ceinture péri-cratonique ouest-africaine

Berger, Julien 29 May 2008 (has links)
Ce travail retrace l’évolution de la suture panafricaine le long de l’axe Anti-Atlas, Hoggar occidental, Gourma, depuis l’activité tectono-magmatique néoprotérozoïque pré-panafricaine jusqu’à l’activité magmatique anorogénique cénozoïque via l’étude de quatre massifs basiques-ultrabasiques disposés à la périphérie du craton ouest-africain.<p><p>Le massif d’Amalaoulaou (Gourma, Mali) est interprété comme la racine d’un arc intra-océanique ayant enregistré la mise en place de magmas basiques (unité des métagabbros) à un stade immature de l’évolution de l’arc (subduction naissante) vers 800-790 Ma. Les gabbros quartziques (~720 Ma) et les gabbros à hornblende de l’unité supérieure ont des signatures de magmas d’arc plus franche, témoins d’une source mantellique plus enrichie par l’apport de la plaque océanique plongeante. Les métagabbros sont ensuite affectés par une recristallisation et localement par une anatexie en conditions du faciès granulitique. De nombreuses veines leucocrates se développent à ce stade, ce sont principalement des anorthosites et des tonalites (mises en place vers 660 Ma) provenant de la fusion partielle des métagabbros (850°C-1000°C, P>10 kbar). Cette fusion génère également des résidus denses à grenat-clinopyroxène-rutile, associations fréquemment présentes dans les racines d’arcs plus récents et reflétant la maturation de l’arc. L’arc d’Amalaoulaou est ensuite exhumé et charrié sur le craton ouest-africain dans des conditions de basse température et moyenne pression (550°C, 6-9 kbar), probablement au même moment que l’exhumation des éclogites du Gourma (~620 Ma).<p><p>L ‘épisode de subduction océanique est suivi par la subduction continentale dans le Gourma et le Hoggar occidental. Les éclogites/amphibolites de Tiléouine et Tin Zebbane (Hoggar occidental) sont des métabasaltes tholéiitiques enrichis et alcalins intracontinentaux ayant plongé à 60 km de profondeur (600°C, 17 kbar) lors de la subduction d’une partie du terrane du Tassendjanet. Même si la nature géochimique du protolithe est encore reconnaissable, ces métabasaltes ont subi une différenciation chimique lors de la recristallisation à haute pression par interaction avec les fluides issus de la déshydratation des métasédiments. L’exhumation (615-600 Ma) se fait relativement lentement, ce qui induit un rééquilibrage thermique (750°C, ~10 kbar) avant l’exhumation à basse température (660 °C, 7-8 kbar) précédant de peu voire synchrone à la phase collisionnelle.<p><p>L’intrusion basique-ultrabasique de Tiléouine marque la fin de la collision panafricaine dans le Hoggar occidental (600-590 Ma). C’est une ancienne chambre magmatique différenciée, mise en place entre 10 et 20 km de profondeur, et montrant une évolution magmatique depuis des cumulats ultramafiques riches en olivine, spinelle et pyroxène vers des gabbros riches en plagioclase. Le magma parental est d’affinité tholéiitique enrichie et tire probablement sa source de la lithosphère sous-continentale. La mise en place de cette intrusion est contemporaine d’un contexte tectonique transtensif induisant un amincissement lithosphérique au niveau du Tassendjanet.<p><p>Cette suture péri-cratonique est réactivée au Cénozoïque, lors de la convergence Afrique-Europe, ce qui se marque par la mise en place de laves alcalines, notamment dans l'Est de l’Anti-Atlas marocain (Saghro :10-3 Ma). Les néphélinites du Saghro sont issues de faibles taux de fusion partielle d’une source mantellique contenant un composant HIMU et localisée à la limite asthénosphère/lithosphère (70-100 km sous l’Anti-Atlas). La cristallisation fractionnée de ces magmas génère des phonolites, par fractionnement de feldspath, néphéline, apatite et sphène, principalement. L’étape finale de différenciation se marque par la formation de phases peu communes comme la hainite et la lorenzenite. Ces magmas se sont mis en place à la faveur de fentes de tension et de fractures ouvertes ayant la même orientation que la contrainte principale au Mio-Pliocène.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
75

Carbonate petrography and geochemistry of BIF of the Transvaal supergroup : evaluating the potential of iron carbonates as proxies for palaeoproterozoic ocean chemistry

Rafuza, Sipesihle January 2015 (has links)
The subject of BIF genesis, particularly their environmental conditions and ocean chemistry at the time of deposition and their evolution through time, has been a subject of much contentiousness, generating a wealth of proposed genetic models and constant refinements thereof over the years. The prevailing paradigm within the various schools of thought, is the widespread and generally agreed upon depositional and diagenetic model(s) which advocate for BIF deposition under anoxic marine conditions. According to the prevailing models, the primary depositional environment would have involved a seawater column whereby soluble Fe²⁺ expelled by hydrothermal activity mixed with free O₂ from the shallow photic zone produced by eukaryotes, forming a high valence iron oxy-hydroxide precursor such as FeOOH or Fe(OH)₃. An alternative biological mechanism producing similar ferric precursors would have been in the form of photo-ferrotrophy, whereby oxidation of ferrous iron to the ferric form took place in the absence of biological O₂ production. Irrespective of the exact mode of primary iron precipitation (which remains contentious to date), the precipitated ferric oxy-hydroxide precursor would have reacted with co-precipitated organic matter, thus acting as a suitable electron acceptor for organic carbon remineralisation through Dissimilatory Iron Reduction (DIR), as also observed in many modern anoxic diagenetic environments. DIR-dominated diagenetic models imply a predominantly diagenetic influence in BIF mineralogy and genesis, and use as key evidence the low δ¹³C values relative to the seawater bicarbonate value of ~0 ‰, which is also thought to have been the dissolved bicarbonate isotope composition in the early Precambrian oceans. The carbon for diagenetic carbonate formation would thus have been sourced through a combination of two end-member sources: pore-fluid bicarbonate at ~0 ‰ and particulate organic carbon at circa -28 ‰, resulting in the intermediate δ¹³C values observed in BIFs today. This study targets 65 drillcore samples of the upper Kuruman and Griquatown BIF from the lower Transvaal Supergroup in the Hotazel area, Northern Cape, South Africa, and sets out to explore key aspects in BIF carbonate petrography and geochemistry that are pertinent to current debates surrounding their interpretation with regard to primary versus diagenetic processes. The focus here rests on applications of carbonate (mainly siderite and ankerite) petrography, mineral chemistry, bulk and mineral-specific carbon isotopes and speciation analyses, with a view to obtaining valuable new insights into BIF carbonates as potential records of ocean chemistry for their bulk carbonate-carbon isotope signature. Evaluation of the present results is done in light of pre-existing, widely accepted diagenetic models against a proposed water-column model for the origin of the carbonate species in BIF. The latter utilises a combination of geochemical attributes of the studied carbonates, including the conspicuous Mn enrichment and stratigraphic variability in Mn/Fe ratio of the Griquatown BIF recorded solely in the carbonate fraction of the rocks. Additionally, the carbon isotope signatures of the Griquatown BIF samples are brought into the discussion and provide insights into the potential causes and mechanisms that may have controlled these signatures in a diagenetic versus primary sedimentary environment. Ultimately, implications of the combined observations, findings and arguments presented in this thesis are presented and discussed with particular respect to the redox evolution and carbon cycle of the ocean system prior to the Great Oxidation Event (GOE). A crucial conclusion reached is that, by contrast to previously-proposed models, diagenesis cannot singularly be the major contributing factor in BIF genesis at least with respect to the carbonate fraction in BIF, as it does not readily explain the carbon isotope and mineral-chemical signatures of carbonates in the Griquatown and uppermost Kuruman BIFs. It is proposed instead that these signatures may well record water-column processes of carbon, manganese and iron cycling, and that carbonate formation in the water column and its subsequent transfer to the precursor BIF sediment constitutes a faithful record of such processes. Corollary to that interpretation is the suggestion that the evidently increasing Mn abundance in the carbonate fraction of the Griquatown BIF up-section would point to a chemically evolving depositional basin with time, from being mainly ferruginous as expressed by Mn-poor BIFs in the lower stratigraphic sections (i.e. Kuruman BF) to more manganiferous as recorded in the upper Griquatown BIF, culminating in the deposition of the abnormally enriched in Mn Hotazel BIF at the stratigraphic top of the Transvaal Supergroup. The Paleoproterozoic ocean must therefore have been characterised by long-term active cycling of organic carbon in the water column in the form of an ancient biological pump, albeit with Fe(III) and subsequently Mn(III,IV) oxy-hydroxides being the key electron acceptors within the water column. The highly reproducible stratigraphic isotope profiles for bulk δ¹³C from similar sections further afield over distances up to 20 km, further corroborate unabatedly that bulk carbonate carbon isotope signatures record water column carbon cycling processes rather than widely-proposed anaerobic diagenetic processes.
76

Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa

Land, Jarred January 2014 (has links)
The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
77

Precambrian Geology of the Cottonwood Cliffs Area, Mohave County, Arizona

Beard, Linda Sue January 1985 (has links)
A belt of Early Proterozoic rocks crops out in the Cottonwood Cliffs area, northwest Arizona. The belt contains an eastern and a western assemblage separated by the Slate Mountain fault. The western assemblage consists of mafic to felsic metavolcanic rocks, metapelites, and metaconglomerates. The eastern assemblage consists of phyllites, felsic to intermediate metavolcanic rocks, metagraywackes, and metagabbro bodies. The belt is bounded to the east by foliated granodiorite. The Valentine granite intruded the belt on the west and north. Steeply-plunging lineations and fold axes, and northeast-trending vertical foliation dominate the structural fabric. The regional elongation direction is near-vertical, as indicated by mineral and pebble lineations, and is parallel to fold axes. Although only one deformational event is evident, the intensity of that event may have obliterated evidence of any earlier deformation. Tertiary basalts and the Peach Springs Tuff locally overly the metamorphic rocks. Cenozoic normal faults in the area are mostly of minor displacement.
78

Sedimentology, geochemistry and depositional environments of the 1175-570 Ma carbonate series, Sankuru-Mbuji-Mayi-Lomami-Lovoy and Bas-Congo basins, Democratic Republic of Congo: new insights into late Mesoproterozoic and Neoproterozoic glacially- and/or tectonically-influenced sedimentary systems in equatorial Africa

Delpomdor, Franck 07 June 2013 (has links)
The one of the most important Eras of the Earth history, i.e. Neoproterozoic (1000-542 Ma),<p>was an enigmatic period characterized by the development of the first stable long-lived ~1.1-<p>0.9 Ga Rodinia and 550-500 Ma Gondwana supercontinents, global-scale orogenic belts,<p>extreme climatic changes (cf. Snowball Earth Hypothesis), the development of microbial<p>organisms facilitating the oxidizing atmosphere and explosion of eukaryotic forms toward the<p>first animals in the terminal Proterozoic. This thesis presents a multidisciplinary study of two<p>Neoproterozoic basins, i.e. Bas-Congo and Sankuru-Mbuji-Mayi-Lomami-Lovoy, in and around the Congo Craton including sedimentology, geochemistry, diagenesis, chemostratigraphy and radiometric dating of carbonate deposits themselves.<p><p>The Mbuji-Mayi Supergroup sequence deposited in a SE-NW trending 1500 m-thick siliciclastic-carbonate intracratonic failed-rift basin, extends from the northern Katanga Province towards the centre of the Congo River Basin. The 1000 m-thick carbonate succession is related to the evolution of a marine ramp submitted to evaporation, with ‘deep’ shaly basinal and low-energy carbonate outer-ramp environments, marine biohermal midramp (MF6) and ‘very shallow’ restricted tide-dominated lagoonal inner-ramp (MF7-MF9) settings overlain by lacustrine (MF10) and sabkha (MF11) environments, periodically<p>submitted to a river water source with a possible freshwater-influence. The sequence stratigraphy shows that the sedimentation is cyclic in the inner ramp with plurimetric ‘thin’ peritidal cycles (± 4 m on average) recording a relative sea level of a maximum of 4 m, with fluctuations in the range of 1-4 m. The outer/mid ramp subtidal facies are also cyclic with ‘thick’ subtidal cycles characterized by an average thickness of ± 17 m, with a probable sealevel<p>fluctuations around 10 to 20 m. The geochemistry approach, including isotopic and major/trace and REE+Y data, allows to infer the nature of the dolomitization processes operating in each carbonate subgroup, i.e dolomitization may be attributed to evaporative reflux of groundwater or to mixing zones of freshwater lenses. The latest alteration processes occured during the uplift of the SMLL Basin. New ages, including LA-ICP-MS U-Pb laser ablation data on detrital zircon grains retrieved in the lower arenaceous-pelitic sequence (BI group), combined with carbon and strontium isotopic analyses, yielded a new depositional time frame of the Mbuji-Mayi Supergroup between 1176 and 800 Ma reinforcing the formerly suggested correlation with the Roan Group in the Katanga Province.<p><p>In the Democratic Republic of Congo, the Sturtian-Marinoan interglacial period was previously related to pre-glacial carbonate-dominated shallow marine sedimentation of the Haut-Shiloango Subgroup with stromatolitic reefs at the transition between greenhouse (warm) and icehouse (cold) climate periods, commonly marked by worldwide glacigenic diamictites and cap carbonates. This thesis highlights that these deposists record as a deepening-upward evolution from storm-influenced facies in mid- and outer-ramps to deepwater environments, with emplacement of mass flow deposits in toe-of-slope settings controlled by synsedimentary faults. In absence of diagnostic glacial features, the marinoan Upper Diamictite Formation is interpreted as a continuous sediment gravity flow deposition along carbonate platform-margin slopes, which occurred along tectonically active continental margins locally influenced by altitude glaciers, developed after a rift–drift transition. The maximum depth of the deepening-upward facies is observed in the C2a member. The<p>shallowing-upward facies exibit a return of distally calcareous tempestites and semi-restricted to restricted peritidal carbonates associated with shallow lagoonal subtidal and intertidal zones submitted to detrital fluxes in the upper C2b to C3b members.<p>The geochemistry highlights (i) the existence of a δ13C-depth gradient of shallow-water and deep-water carbonates; (ii) the carbonate systems were deposited in oxic to suboxic conditions; and (iii) all samples have uniform flat non-marine shale-normalized REE+Y distributions reflecting<p>continental detrital inputs in nearshore environments, or that the nearshore sediments were<p>reworked from ’shallow’ inner to mid-ramp settings in deep-water slope and outer-ramp<p>environments, during the rift-drift transition in the basin. The pre-, syn- and post-glacial<p>carbonate systems could record a distally short-lived regional synrift freshwater-influenced<p>submarine fan derived from nearshore sediments, including gravity flow structures, which are<p>attributed to regional tectonic processes due to a sudden deepening of the basin caused by<p>differential tilting and uplifting of blocks, related to the 750-670 Ma oceanic spreading of the<p>central-southern Macaúbas Basin.<p><p>Combining sedimentology, isotopes and trace elemental geochemistry, the thesis highlights<p>that the δ13C variations in the Neoproterozoic carbonates are complex to interpret, and can be<p>related to: (i) the existence of a δ13C-depth gradient; (ii) the exchange between isotopically<p>light carbon in meteoric waters and carbonate during lithification and early diagenesis; and<p>(iii) isotopic perturbations due to regional metamorphism. Considering the possible englaciation of the Earth (Snowball Earth hypothesis), the Mbuji-Mayi Supergroup and West<p>Congolian Group seem reflected the intimate relationship between glaciations and tectonic<p>activity during the break-up of the Rodinia supercontinent, followed by the rift–drift<p>transition, and finally the pre-orogenic period on the passive continental margin. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
79

Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, Wyoming

Anderson, Alvin D. 25 April 2008 (has links) (PDF)
Geologic mapping in the Phil Pico Mountain quadrangle and analysis of the Carter Oil Company Carson Peak Unit 1 well have provided additional constraints on the erosional and uplift history of this section of the north flank of the Uinta Mountains. Phil Pico Mountain is largely composed of the conglomeratic facies of the early Eocene Wasatch and middle to late Eocene Bridger Formations. These formations are separated by the Henrys Fork fault which has thrust Wasatch Formation next to Bridger Formation. The Wasatch Formation is clearly synorogenic and contains an unroofing succession from the adjacent Uinta Mountains. On Phil Pico Mountain, the Wasatch Formation contains clasts eroded sequentially from the Permian Park City Formation, Permian Pennsylvanian Weber Sandstone, Pennsylvanian Morgan Formation, and the Pennsylvanian Round Valley and Mississippian Madison Limestones. Renewed uplift in the middle and late Eocene led to the erosion of Wasatch Formation and its redeposition as Bridger Formation on the down-thrown footwall of the Henrys Fork fault. Field observations and analysis of the cuttings and lithology log from Carson Peak Unit 1 well suggest that initial uplift along the Henrys Fork Fault occurred in the late early or early middle Eocene with the most active periods of uplift in the middle and late Eocene (Figure 8, Figure 24, Appendix 1). The approximate post-Paleocene throw of the Henrys Fork fault at Phil Pico Mountain is 2070 m (6800 ft). The Carson Peak Unit 1 well also reveals that just north of the Henrys Fork fault at Phil Pico Mountain the Bridger Formation (middle to late Eocene) is 520 m (1710 ft) thick; an additional 460 m (1500 ft) of Bridger Formation lies above the well on Phil Pico Mountain. Beneath the Bridger Formation are 400 m (1180 ft) of Green River Formation (early to middle Eocene), 1520 m (5010 ft) of Wasatch Formation (early Eocene), and 850 m (2800 ft) of the Fort Union Formation (Paleocene). Stratigraphic data from three sections located east to west across the Phil Pico Mountain quadrangle show that the Protero-zoic Red Pine Shale has substantially more sandstone and less shale in the eastern section of the quadrangle. Field observations suggest that the Red Pine Shale undergoes a facies change across the quadrangle. However, due to the lack of continuous stratigraphic exposures, the cause of this change is not known.

Page generated in 0.067 seconds