Spelling suggestions: "subject:"pseudopotential""
41 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDias, David Pires 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
42 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDavid Pires Dias 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
43 |
Generalizations of Szego Limit Theorem : Higher Order Terms and Discontinuous SymbolsGioev, Dimitri January 2001 (has links)
No description available.
|
44 |
Generalizations of Szego Limit Theorem : Higher Order Terms and Discontinuous SymbolsGioev, Dimitri January 2001 (has links)
No description available.
|
45 |
Mixed Interface Problems of Thermoelastic Pseudo-OscillationsJentsch, L., Natroshvili, D., Sigua, I. 30 October 1998 (has links) (PDF)
Three-dimensional basic and mixed interface problems of the mathematical
theory of thermoelastic pseudo-oscillations are considered for piecewise homogeneous
anisotropic bodies. Applying the method of boundary potentials and the theory of
pseudodifferential equations existence and uniqueness theorems of solutions are proved
in the space of regular functions C^(k+ alpha) and in the Bessel-potential (H^(s)_(p))
and Besov (B^(s)_(p,q)) spaces. In addition to the classical regularity results
for solutions to the basic interface problems, it is shown that in the mixed interface
problems the displacement vector and the temperature are Hölder continuous with
exponent 0<alpha<1/2.
|
46 |
Quantification de groupes p-adiques et applications aux algèbres d'opérateurs. / Quantization of p-adic groups and applications to operator algebras.Jondreville, David 26 June 2017 (has links)
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées. / This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras.
|
47 |
Berezin--Toeplitz quantization and noncommutative geometryFalk, Kevin 11 September 2015 (has links)
Cette thèse montre en quoi la quantification de Berezin--Toeplitz peut être incorporée dans le cadre de la géométrie non commutative.Tout d'abord, nous présentons les principales notions abordées : les opérateurs de Toeplitz (classiques et généralisés), les quantifications géométrique et par déformation, ainsi que quelques outils de la géométrie non commutative.La première étape de ces travaux a été de construire des triplets spectraux (A,H,D) utilisant des algèbres d'opérateurs de Toeplitz sur les espaces de Hardy et Bergman pondérés relatifs à des ouverts Omega de Cn à bord régulier et strictement pseudoconvexes, ainsi que sur l'espace de Fock sur Cn. Nous montrons que les espaces non commutatifs induits sont réguliers et possèdent la même dimension que le domaine complexe sous-jacent. Différents opérateurs D sont aussi présentés. Le premier est l'opérateur de Dirac usuel sur L2(Rn) ramené sur le domaine par transport unitaire, d'autres sont formés à partir de l'opérateur d'extension harmonique de Poisson ou de la dérivée normale complexe sur le bord de Omega.Dans un deuxième temps, nous présentons un triplet spectral naturel de dimension n+1 construit à partir du produit star de la quantification de Berezin--Toeplitz. Les éléments de l'algèbre correspondent à des suites d'opérateurs de Toeplitz dont chacun des termes agit sur un espace de Bergman pondéré. Plus généralement, nous posons des conditions pour lesquelles une somme infinie de triplets spectraux forme de nouveau un triplet spectral, et nous en donnons un exemple. / The results of this thesis show links between the Berezin--Toeplitz quantization and noncommutative geometry.We first give an overview of the three different domains we handle: the theory of Toeplitz operators (classical and generalized), the geometric and deformation quantizations and the principal tools we use in noncommutative geometry.The first step of the study consists in giving examples of spectral triples (A,H,D) involving algebras of Toeplitz operators acting on the Hardy and weighted Bergman spaces over a smoothly bounded strictly pseudoconvex domain Omega of Cn, and also on the Fock space over Cn. It is shown that resulting noncommutative spaces are regular and of the same dimension as the complex domain. We also give and compare different classes of operator D, first by transporting the usual Dirac operator on L2(Rn) via unitaries, and then by considering the Poisson extension operator or the complex normal derivative on the boundary.Secondly, we show how the Berezin--Toeplitz star product over Omega naturally induces a spectral triple of dimension n+1 whose construction involves sequences of Toeplitz operators over weighted Bergman spaces. This result led us to study more generally to what extent a family of spectral triples can be integrated to form another spectral triple. We also provide an example of such triple.
|
48 |
The Calderón problem for connectionsCekić, Mihajlo January 2017 (has links)
This thesis is concerned with the inverse problem of determining a unitary connection $A$ on a Hermitian vector bundle $E$ of rank $m$ over a compact Riemannian manifold $(M, g)$ from the Dirichlet-to-Neumann (DN) map $\Lambda_A$ of the associated connection Laplacian $d_A^*d_A$. The connection is to be determined up to a unitary gauge equivalence equal to the identity at the boundary. In our first approach to the problem, we restrict our attention to conformally transversally anisotropic (cylindrical) manifolds $M \Subset \mathbb{R}\times M_0$. Our strategy can be described as follows: we construct the special Complex Geometric Optics solutions oscillating in the vertical direction, that concentrate near geodesics and use their density in an integral identity to reduce the problem to a suitable $X$-ray transform on $M_0$. The construction is based on our proof of existence of Gaussian Beams on $M_0$, which are a family of smooth approximate solutions to $d_A^*d_Au = 0$ depending on a parameter $\tau \in \mathbb{R}$, bounded in $L^2$ norm and concentrating in measure along geodesics when $\tau \to \infty$, whereas the small remainder (that makes the solution exact) can be shown to exist by using suitable Carleman estimates. In the case $m = 1$, we prove the recovery of the connection given the injectivity of the $X$-ray transform on $0$ and $1$-forms on $M_0$. For $m > 1$ and $M_0$ simple we reduce the problem to a certain two dimensional $\textit{new non-abelian ray transform}$. In our second approach, we assume that the connection $A$ is a $\textit{Yang-Mills connection}$ and no additional assumption on $M$. We construct a global gauge for $A$ (possibly singular at some points) that ties well with the DN map and in which the Yang-Mills equations become elliptic. By using the unique continuation property for elliptic systems and the fact that the singular set is suitably small, we are able to propagate the gauges globally. For the case $m = 1$ we are able to reconstruct the connection, whereas for $m > 1$ we are forced to make the technical assumption that $(M, g)$ is analytic in order to prove the recovery. Finally, in both approaches we are using the vital fact that is proved in this work: $\Lambda_A$ is a pseudodifferential operator of order $1$ acting on sections of $E|_{\partial M}$, whose full symbol determines the full Taylor expansion of $A$ at the boundary.
|
49 |
Regularity And Propagation Phenomena In Some Linear And Non-Linear Partial Differential Equations With Particular Reference To Microlocal AnalysisJain, Rahul 03 1900 (has links) (PDF)
No description available.
|
50 |
Mixed Interface Problems of Thermoelastic Pseudo-OscillationsJentsch, L., Natroshvili, D., Sigua, I. 30 October 1998 (has links)
Three-dimensional basic and mixed interface problems of the mathematical
theory of thermoelastic pseudo-oscillations are considered for piecewise homogeneous
anisotropic bodies. Applying the method of boundary potentials and the theory of
pseudodifferential equations existence and uniqueness theorems of solutions are proved
in the space of regular functions C^(k+ alpha) and in the Bessel-potential (H^(s)_(p))
and Besov (B^(s)_(p,q)) spaces. In addition to the classical regularity results
for solutions to the basic interface problems, it is shown that in the mixed interface
problems the displacement vector and the temperature are Hölder continuous with
exponent 0<alpha<1/2.
|
Page generated in 0.08 seconds