• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asymptotic spectral analysis and tunnelling for a class of difference operators

Rosenberger, Elke January 2006 (has links)
We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d.<br> We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix. / Wir analysieren das asymptotische Verhalten im Grenzwert epsilon gegen null von einer weiten Klasse von Differenzen operatoren H_epsilon = T_epsilon + V_epsilon mit unterliegendem Potential. Sie wirken auf die quadrat-summierbaren Funktionen auf dem Gitter (epsilon Z)^d.<br> Zunächst zeigen wir die Gültigkeit einer harmonischen Approximation und konstruieren WKB-Lösungen an den Töpfen. Dann konstruieren wir eine Finslersche Abstandsfunktion d, die durch H induziert wird und zeigen, daß kurze Integralkurven Geodäten sind und daß d die Rate des exponentiellen Abfallverhaltens von Dirichlet-Eigenfunktionen beschreibt. Bezügliche dieses Abstands geben wir scharfe Abschätzungen für die Wechselwirkung zwischen den Töpfen und konstruieren die Wechselwirkungs-Matrix.
2

Linear hyperbolic Cauchy problems with low-regular coefficients

Lorenz, Daniel 20 July 2020 (has links)
Die vorgelegte Dissertation befasst sich mit der Frage unter welchen Bedingungen und in welchen Funktionenräumen hyperbolische Cauchy Probleme korrekt gestellt sind, wenn die Koeffizienten niedrige Regularität haben. Startpunkt der Betrachtungen sind strikt hyperbolische Cauchy Probleme beliebiger Ordnung mit Koeffizienten, die bezüglich der Zeit nicht differenzierbar aber glatt in allen Ortsvariablen sind. Abhängig von der Regularität der Koeffizienten bezüglich der Zeit, wird gezeigt in welchen Räumen Problem dieser Art korrekt gestellt sind. Insbesondere werden Zusammenhänge zwischen der Regularität der Koeffizienten und den Lösungsräumen deutlich. Basierend auf den Erkenntnissen für strikt hyperbolische Cauchy Probleme werden anschließend schwach hyperbolische Cauchy Probleme untersucht. Hier wird eine verallgemeinerte Levi Bedingung eingeführt und gezeigt, welcher Zusammenhang zwischen dem Einfluss der Levi Bedingungen und der niedrigen Regularität der Koeffizienten auf die Lösungsräume besteht. Schließlich wird noch den Fall von strikt hyperbolischen Cauchy Problemen betrachtet, die Koeffizienten mit niedriger Regularität in allen Variablen haben.

Page generated in 0.1165 seconds