71 |
Pulsed-Laser Excited Photothermal Study of Glasses and Nanoliter Cylindrical Sample Cell Based on Thermal Lens SpectroscopyJoshi, Prakash Raj 01 May 2010 (has links)
The research in this dissertation presents Pulsed-Laser Excited photothermal studies of optical glasses and cylindrical sample cell.
First, a study of a photothermal lens experiment and the finite element analysis modeling for commercial colored glass filters is done. The ideal situation of a semiinfinite cylinder approximate model used to describe the photothermal lens experiment requires the boundary condition that there is no transfer of heat from the glass to surrounding when the glass is excited with a laser. The finite element analysis modeling for photothermal signal with coupling heat with surrounding shows the thermal heat transfer between the glass surface and the coupling fluid. This work shows that the problem can be resolved by using pulsed laser excitation where the signal decay is faster than the heat diffusion to the surrounding, and finite element analysis modeling to correct the likely deviation from semi-infinite cylinder approximate models.
Second, finite element analysis modeling of a photothermal lens signal also shows that there are slow and fast components of signals, which are detected by using a fast response detector and is explained to be due to the axial and radial transfer of heat. A semi-analytical theoretical description of the mode-mismatched continuous and pulsedlaser excitation thermal lens effect that accounts for heat coupling both within the sample and out to the surrounding is presented. The results are compared with the finite element analysis solution and found to be an excellent agreement. The analytical model is then used to quantify the effect of the heat transfer from the sample surface to the air coupling fluid on the thermal lens signal. The results showed that the air signal contribution to the total photothermal lens signal is significant in many cases.
Third, surface deformation phenomena are quite common when glasses are excited by laser. Finite element analysis modeling of a surface deformation phenomenon is done. A thermal lens reflection experiment is carried out and results are compared with modeling. The effect of coupling fluid on sample is taken in to account to make more accurate measurement of thermophysical properties of solid sample.
Fourth, a novel apparatus for performing photothermal lens spectroscopy is described which uses a low-volume cylindrical sample cell with a pulsed excitation laser. Finite element analysis modeling is used to examine the temperature profile and the photothermal signal. The result of finite element analysis is compared with the experimental result. The experimental photothermal lens enhancement has been found to be that predicted from theory within experimental error.
|
72 |
Oxidische Perovskite mit Hoher Massenzahl Z: Dünnfilmdeposition und Spektroskopische Untersuchungen / High-Z Perovskite Oxides: Thin Film Deposition and Spectroscopic InvestigationsZapf, Michael January 2019 (has links) (PDF)
Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties.
A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\).
KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm.
The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 %. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice. / Komplexe Metalloxide mit Perowskitstruktur sind bekannt für ihre große Vielfalt einzigartiger physikalischer Eigenschaften. Eine interessante Untergruppe dieser Materialien sind Verbindungen von Elementen mit hoher Ordnungszahl \(Z\), in denen neue, durch Spin-Bahn Kopplung getriebene Phasen und anwendungsrelevante Funktionalitäten erwartet werden. Diese Arbeit handelt von der Präparation und Charakterisierung zweier Probensysteme, die auf eben solchen Materialien mit hoher \(Z\) basieren.
KTaO\(_3\) ist ein Bandisolator, der im Grundzustand eine Ta 5\(d\)\(^0\) Valenz besitzt. Durch gepulste Laserdeposition von ungeordnetem LaAlO\(_3\) auf der KTaO\(_3\)(001) Oberfläche, werden die obersten Schichten des Substratkristalls durch die Erzeugung von Sauerstofffehlstellen dotiert. Es bildet sich ein quasi zweidimensionales metallisches Elektronensystem (q2DES) an der Grenzfläche der Heterostruktur aus. Messungen des Hall-Effekts ergeben Schichtladungsträgerdichten im Bereich von 0.1-1.2 10\(^{14}\) cm\(^2\), welche durch Anpassung des Sauerstoffhintergrunddrucks während der Deposition bzw. durch die Dicke der abgeschiedenen LaAlO\(_3\) Schicht beeinflusst werden können. Mit Werten von 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) bei Raumtemperatur (unter 10 K), besitzt das q2DES in LaAlO\(_3\)/KTaO\(_3\) im Vergleich zu ähnlichen Elektronensystemen in SrTiO\(_3\) bemerkenswert große Ladungsträgerbeweglichkeiten. Aus dem Tiefenprofil des Photoemissionspektrums des Ta 4\(f\) Rumpfniveaus ergibt sich, dass sich der Großteil der Ta 5\(d\) Ladungsträger, bestehend aus mobilen und lokalisierten Elektronen, innerhalb einer Schicht von 4 nm Dicke befindet. Die Vermessung der elektronischen Bandstruktur des vergrabenen q2DES mit Hilfe winkelaufgelöster Photoelektronenspektroskopie mit harter Röntgenstrahlung zeigt, dass das Elektronensystem, vermutlich wegen des starken Potentialgradients an der Grenzfläche, eine modifizierte elektronische Struktur gegenüber n-dotiertem Bulk-KTaO\(_3\) aufweist. Trotz der Einschränkung der Bewegung der Elektronen entlang einer Richtung, besitzt die Fermifläche des Systems eine dreidimensionale Struktur, woarus auf eine Tiefenausdehnung der metallischen Zustände von mindestens 1 nm geschlossen werden kann.
Undotiertes BaBiO\(_3\) ist durch die Ausbildung einer Ladungsordnung isolierend. Unter Elektronendotierung gilt das Material als Kandidat für einen oxidischen topologischen Isolator. In dieser Studie wird die Deposition von BaBiO\(_3\) auf Nb:SrTiO\(_3\)(001) Substraten untersucht. Dabei wird der Mechanismus identifiziert, der epitaktisches Wachstum von BaBiO\(_3\), trotz einer Gitterfehlanpassung von 12 %, ermöglicht: Eine 1.7 nm dicke Lage mit abweichender Kristallstruktur an der Grenzfläche entkoppelt das Filmgitter vom Substrat, sodass darüber vollständig relaxiertes BaBiO\(_3\) aufwachsen kann. Dieses weist eine epitaktische Orientierung von BaBiO\(_3\)(001)||SrTiO\(_3\)(001) auf, die durch die Ausbildung von lateralen Gitterdomänen, bei denen 8 bzw. 9 BaBiO\(_3\) auf 9 bzw. 10 SrTiO\(_3\) Einheitszellen ausgerichtet sind, gewährleistet wird. Die Stoichiometrie und die strukturelle Qualität der BaBiO\(_3\) Filme werden durch eine systematische Anpassung der Depositionsbedingungen optimiert. Die Valenzbandstruktur der Proben stimmt gut mit Rechnungen der Dichtefunktionaltheorie überein, was darauf hindeutet, dass die Filme hinsichtlich der elektronischen Eigenschaften mit BaBiO\(_3\) Einkristallen vergleichbar sind. Eine abschließende Untersuchung eines schichtdickenabhängigen Phasenübergangs in BaBiO\(_3\) Dünnfilmen, von dem kürzlich in der Literatur berichtet wurde, belegt, dass dieser nicht allein auf die Ausdehnung des Kristallgitters, sondern auch auf strukturelle und stoichiometrische Modifikationen der untersten Filmlagen zurückzuführen ist.
|
73 |
Optical and vibrational properties of new "Nano-Designed" materials produced by pulsed laser depositionMargueritat, Jeremie 21 April 2008 (has links) (PDF)
Nous avons développé de nouveaux concepts de fabrication de matériaux nanostructurés en couche mince basés sur le dépôt par ablation laser alterné d'un métal (Ag) et d'un diélectrique (Al2O3). Cette technique permet d'atteindre un contrôle optimal sur les paramètres morphologiques des nanostructures qui déterminent la réponse optique des couches minces. Nous avons produit des nanosphères, des nanolentilles et des nanocolonnes, auto-organisées et orientées, encapsulées dans une matrice d'alumine amorphe. Leur réponse optique a été étudiée en fonction de leur morphologie et comparée à des simulations théoriques. En parallèle à cette étude, la réponse vibrationnelle des nanostructures a été analysée par spectrométrie Raman basse fréquence. Finalement, des nanostructures contenant des couches alternées de nanoparticules de Co et d'Ag séparées par une distance de quelques nanomètres ont aussi été fabriquées. Il a été montré que l'interaction entre le plasmon de surface et les modes sphéroïdaux de vibration des nanoparticules active le signal Raman.
|
74 |
Growth and Properties of (001)-oriented Pb(Zr₀.₅₂Ti₀.₄₈)O₃/LaNiO₃ Films on Si(001) Substrates with TiN Buffer LayersZhu, Tie-Jun, Lu, Li, Thompson, Carl V. 01 1900 (has links)
Pulsed laser deposition has been used to grow Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT)/LaNiO₃ (LNO) heterostructures with restricted crystallographic orientations on bare Si(001) and SiO₂-coated Si(001) substrates, using TiN buffer layers. The effect of background gas pressure on orientation of the thin films was investigated in detail. XRD analyses showed that under optimized conditions, (001)-oriented PZT/LNO/TiN heterostructures could be grown on either Si(001) or SiO₂/Si substrates. The (001)-textured PZT films had remnant polarizations as high as 23µC/cm², and also had a low coercive field. Up to 10¹⁰ switching cycles have been achieved in these PZT films. / Singapore-MIT Alliance (SMA)
|
75 |
Process development for si-based nanostructures using pulsed UV laser induced epitaxyDeng, Chaodan 10 1900 (has links) (PDF)
Ph.D. / Electrical Engineering / Nanometer-scale devices have attracted great attention as the ultimate evolution of silicon integrated circuit technology. However, fabrication of nanometer-scale silicon based devices has met great difficulty because it places severe constraints on process technology. This is especially true for SiGe/Si heterostructures because they are particularly sensitive to strain relaxation and/or process induced defects. Recently developed Pulsed Laser Induced Epitaxy (PLIE) offers a promising approach for the fabrication of nanometer- scale SiGe/Si devices. It possesses the advantage of ultra-short time, low thermal budget and full compatibility with current silicon technology. The selective nature of the process allows epitaxial growth of high quality, localized SiGe layers in silicon. In this thesis, a process to fabricate SiGe nanowires in silicon using PLIE is described. In particular, Ge nanowires with a cross-section of ~6 x 60 nm² are first formed using a lift-off process on the silicon substrate with e-beam lithography, followed by a thin low-temperature oxide deposition. Defect-free SiGe nanowires with a cross-section of ~25 x 95 nm² are then produced by impinging the laser beam on the sample. We thus demonstrate PLIE is a suitable fabrication technique for SiGe/Si nanostructures. Fabrication of Ge nanowires is also studied using Focused Ion Beam (FIB) micromachining techniques. Based on the SiGe nanowire process, we propose two advanced device structures, a quantum wire MOSFET and a lateral SiGe Heterojunction Bipolar Transistor (HBT). MEDICI simulation of the lateral SiGe HBT demonstrates high performance of the device. In order to characterize the SiGe nanowires using cross-sectional transmission electron microscopy, an advanced versatile focused ion beam assisted sample preparation technique using a multi-layer stack scheme for localized surface structures is developed and described in this thesis.
|
76 |
Multifunctional magnetic materials prepared by Pulsed Laser DepositionNagar, Sandeep January 2012 (has links)
Pulsed LASER deposition (PLD) is widely recognized as excellent deposition technique owing to stoichiometric transfer of target material, easy preparation and high quality. Thin films from few nanometers to micrometer regime can be fabricated with equal ease. Although a batch process is not suitable for mass scale industrial production, PLD is a versatile technique, efficient and convenient for high quality basic research. This thesis illustrates the use of PLD technique to study the emerging trends in tailoring multifunctional magnetic thin films both from basic nanoscience and device development point of view. After a comprehensive review of magnetism in chapter 1: entitled ‘A journey through classical to modern trends in magnetism, and multifunctional thin film devices’ followed by a reasonably thorough discussion on Pulsed Laser thin film technique in Chapter 2, we present: Studies of tailoring composite high energy product permanent magnetic FePtB based thin films for applications in NEMS /MEMS, (Chapter 3). Study of search for new multiferroic materials by investigating the properties of Chromites. Crystalline Chromites are antiferromagnetic below 150oC. However depositing thin films by PLD of the crystalline 95.5% dense targets produced by Surface Plasma Sintering, we discovered that the resulting films were amorphous and ferromagnetic beyond room temperature. Moreover advanced spectroscopic techniques revealed that the amorphized state is metallic with Cr in a mixed valence state. An understanding of the underlying physics of the observed phenomenon has been carried out based on first principles calculations. These results are now being considered for publication in a high profile journal. Extensive studies on the films showing that these materials are ferromagnetic, but not ferroelectric are discussed in chapter 4. A preliminary presentation of these studies was pier reviewed and published in MRS symposium proceedings. Fabrication of Room temperature, Transparent, high moment soft ferromagnetic amorphous Bulk metallic glass based FeBNbY thin films by PLD, suitable for Nanolithography in NEMS/MEMS device development . (Chapter 5) From a basic study point of view on new trends on magnetism we present: 4. The use of PLD technique to demonstrate room temperature ferromagnetism in undoped MgO, and V-doped MgO thin films. Both of these oxides which do not contain any intrinsically magnetic elements and are diamagnetic in their bulk form belong to a new class of magnetic films, the so called d0magnets signifying that robust above room temperature ferromagnetism arising from defects and controlled carriers and no occupied d-states can be tailored in semiconductors and insulators. These, mostly ZnO and MgO based thin films which may be classified as Dilute Magnetic Semiconductors, DMS, and Dilute Magnetic Insulators, DMI, are now the materials of active interest in future Electronics involving components which exploit both charge and spin of electrons in the arena of SPINTRONICS. Extensive characterization of magnetic, electrical, optical properties and microscopic structure has ensured development of high quality magnetic materials for future applications. Further research on these promising materials is expected to yield new generation spintronic devices for better performance in terms of efficiency, energy consumption and miniaturization of sizes. / QC 20120511
|
77 |
Magnetic field dependence of critical current density in Sm/sub 1+x/Ba/sub 2-x/Cu/sub 3/O/sub 6+/spl delta// films prepared by pulsed laser depositionSudoh, K., Ichino, Y., Yoshida, Y., Takai, Y., Hirabayashi, I., 一野, 祐亮, 吉田, 隆 06 1900 (has links)
No description available.
|
78 |
The development of thermal desorption for ambient ionization mass spectrometryLai, Jia-Hong 26 July 2011 (has links)
The ionization of chemicals in solids or liquids under ambient conditions, known as ambient ionization mass spectrometry, is currently a fruitful research area in mass spectrometry. To classify those ambient ionization techniques from preexisting atmospheric pressure ionization methods, the former are commonly defined as those mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment. A characteristic of this technology is that sample introduction and ionization are usually separate events, thereby allowing independent control of each set of conditions.
A two-step ESI-based technique, named electrospray laser desorption ionization (ELDI), has been developed to characterize nonvolatile analyte molecules directly from the surfaces of solid samples in 2005 by J. Shiea and his co-workers. The analyte molecules are produced by laser irradiating of the sample surfaces, and then post-ionized in an ESI plume. However, the pulsed laser used in ELDI-MS system is quite expensive. Our aim in this research is to develop simple, convenient, and cheap desorption methods and coupled them to post-ionization techniques for direct analysis of liquid and solid sample analysis. They includes: (a) the use of continuous wave (CW) laser instead of pulsed laser to desorb analytes in liquid samples and ointments, and (b) the use of thermal probe to desorb analytes in solid and liquid samples. All of the desorbed neutral species like molecules or droplets are then post-ionized via ESI or APCI processes.
The first topic of the research is to develop a cheaper laser system to introduce analytes in solids or liquids into reaction region for post-ionization. In this section, we use a CW laser instead of a pulsed laser for the sampling of analytes. The titanium foil and stainless steel foil sample plate is quite useful and shows a great of desorption efficiency for liquid samples while irradiating by a CW laser. The detection limit by using a CW laser for sampling and ESI for post-ionization is 0.1 £gM for Benzethonium chloride and 1 £gM for cytochrome c, respectively. The combination of CW laser desorption and ESI post-ionization mass spectrometry can be applied in drug components, food safety and biomedical sample analysis. As a result of small size, lightness and lower prices of CW laser system, it not only shows large potential to use as a high efficiency desorption device for novel ionization source of mass spectrometer but also available for a wide range of useful application in many fields.
The second topic of the research is to develop a new thermal probe for the direct desorption of sample surface. The home-made thermal probe is used to touch surface of solid sample or liquid sample to generate gas phase molecules or micro analyte droplets. Those neutral analytes are then post-ionized via ESI or APCI processes. In this study, the setting temperature of thermal probe is 250¢J. When the thermal probe touches liquid sample, it makes droplets boiling away explosively and then fused with ESI plume to generate ions. The detection limit by using a thermal probe for sampling and ESI or APCI for post-ionization is 1 £gM for both melamine and cytochrome c. This technique is also applied to analyze controversial additives in drinks. It also shows large potential to use as a high efficiency desorption device for novel ionization source of mass spectrometer and useful for a wide range of useful application in many fields.
|
79 |
Early stage sintering and PLAL fragmentation of micro-scale CaCO3Lin, Peng-Wen 04 July 2012 (has links)
In the first part of this thesis, CaCO3 (calcite) powder ball-milled to micro/nano scale were subjected to isothermal firing in the temperature range of 450-600 ¢XC in an open air furnace in order to study specific-surface area reduction as a result of early-stage sintering/coarsening/coalescence/repacking (denoted as SCCR process) of the fine particles. The surface area and pore size distributions were obtained from the BET and BJH methods, respectively. The H1 type adsorption/desorption hysteresis loop of the type IV isotherm was used as an indicator of cylindrical pore formation upon dry pressing and firing of the powder. The apparent activation energy for the onset SCCR of the dry-pressed calcite powder turned out to be 57.5¡Ó1.0 kJ/mol based on t0.5, i.e. time for 50 % specific surface area reduction. The minimum temperature for such an incipient SCCR process was estimated to be 590K (317¢J) by extrapolating the specific-surface-area reduction rate to null. The mechanism of specific surface area change includes the Brownian motion, coarsening and coalescence/repacking of calcite particles besides sintering via synchronizing diffusion of calcium ion and carbonic acid ion along grain surface and boundary. In the second part of this thesis, pulsed laser ablation on micrometer-sized calcite (type I) powder in liquid H2O (PLAL) was conducted to study the structure and optical property change of calcium carbonate under a dynamic high-temperature.
high-pressure aqueous condition. X-ray diffraction (XRD) indicated the fragmented calcite I powder via such a PLAL process change predominantly into a metastable CaCO3 II phase presumably by a displacive type transformation from calcite I and/or nucleated from atom clusters. The refined XRD lattice parameters indicate a significant internal compressive stress (up to 1.5 GPa) was retained for the predominant CaCO3 II nanoparticles having well-developed (013), (010) and (013) faces as revealed by transmission electron microscopy (TEM). Minor calcium carbonate nanoparticles were also identified by TEM to be other high-pressure polymorphs (type III and aragonite), hydrated (monohydrocalcite, ikaite), amorphized (amorphous calcium carbonate), and even decomposed as cubic lime (CaO). Monohydrocalcite occasionally occurred as epitaxial intergrowths within the predominant CaCO3 II matrix. Vibrational spectroscopy (Raman and FTIR) indicated
the structure units of the overall nanoparticles by the PLAL process were considerably modified as a combined results of size miniature, protonation and internal compressive stress. The UV-visible absorption results further indicate that the minimum band gap of the colloidal solution was narrowed down to ca. 5 eV and 3 eV for the predominant CaCO3 II and minor accessory phases, respectively, thus shedding light on their potential opto-catalytic applications.
|
80 |
Metal Nitride Diffusion Barriers for Copper InterconnectsAraujo, Roy A. 14 January 2010 (has links)
Advancements in the semiconductor industry require new materials with
improved performance. With the introduction of copper as the interconnect material for
integrated circuits, efficient diffusion barriers are required to prevent the diffusion of
copper into silicon, which is primarily through grain boundaries. This dissertation
reports the processing of high quality stoichiometric thin films of TiN, TaN and HfN,
and studies their Cu diffusion barrier properties.
Epitaxial metastable cubic TaN (B1-NaCl) thin films were grown on Si(001)
using an ultra-thin TiN (B1-NaCl) seed layer which was as thin as 1 nm. The TiN/TaN
stacks were deposited by Pulsed Laser Deposition (PLD), with the TiN thickness
systematically reduced from 15 to 1 nm. Microstructural studies included X-ray
diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM
(HRTEM). Preliminary Cu diffusion experiments showed that the TiN seed layer
thickness had little or no obvious effect on the overall microstructure and the diffusion
barrier properties of the TaN/TiN stacks. Epitaxial and highly textured cubic HfN (B1-NaCl) thin films (~100 nm) were
deposited on MgO(001) and Si(001) using PLD. Low resistivities (~40 mu omega-cm) were
measured with a four point probe (FPP). Microstructural characterizations included
XRD, TEM, and HRTEM. Preliminary Cu diffusion tests demonstrated good diffusion
barrier properties, suggesting that HfN is a promising candidate for Cu diffusion
barriers.
Cubic HfN (B1-NaCl) thin films were grown epitaxially on Si(001) substrates by
using a TiN (B1-NaCl) buffer layer as thin as ~10 nm. The HfN/TiN stacks were
deposited by PLD with an overall thickness less than 60 nm. Detailed microstructural
characterizations included XRD, TEM, and HRTEM. The electrical resistivity measured
by FPP was as low as 70 mu omega-cm. Preliminary copper diffusion tests showed good
diffusion barrier properties with a diffusion depth of 2~3 nm after vacuum annealing at
500 degrees C for 30 minutes.
Additional samples with Cu deposited on top of the cubic HfN/TiN/Si(001) were
vacuum annealed at 500 degrees C, 600 degrees C and 650 degrees C for 30 minutes. The diffusivity of copper
in the epitaxial stack was investigated using HRTEM. The measured diffusion depths,
2 Dt , were 3, 4 and 5 nm at 500 degrees C, 600 degrees C and 650 degrees C respectively. Finally, the
diffusivity of Cu into epitaxial HfN was determined to be D=D0 exp(-Q/kT)cm2s-1 with D0=2.3x10-14cm2s-1 and Q=0.52eV.
|
Page generated in 0.0427 seconds