• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of high-frequency coding for single cortical cells and precisely manipulating action-potential timing in vivo

Doose, Jens Peter 30 July 2018 (has links)
Diese Arbeit beschäftigt sich sowohl mit der experimentell motivierten Fragestellung nach der Kontrolle der Einzelzellaktivität kortikaler Neurone sowie mit der theoretischen Beschreibung der neuronalen Dynamik und ihrer Transfereigenschaften anhand einfacher Neuronenmodelle. Hierfür werden in-vivo Daten, die mit Hilfe der juxtazellulären Stimulation mit weißem bandpass limitiertem Gaußschem Rauschen erhoben wurden, verwendet. Mit Parameterfits einfacher Neuronenmodelle werden die experimentell ermittelten Pulszugstatistiken sowie die präzisen Zeitpunkte der einzelnen Aktionspotentiale quantitativ reproduziert. Diese Untersuchungen zeigen, dass mit dynamischen Rauschstimuli in juxtazellulärer Stimulation verlässlich und reproduzierbar Pulszüge in einzelnen kortikalen Neuronen hervorgerufen werden können. Weiterhin offenbart die Analyse der Daten die Eigenschaft der untersuchten Neurone frequenzunabhängig, bishin zu Vielfachen der Feuerrate des Neurons, Information über Signalkomponenten zu transferieren. Diese Eigenschaft steht im Widerspruch zum Verhalten der einfachsten (und populärsten) integrate-and-fire Modelle, die die Zelle ohne Auflösung ihrer räumlichen Struktur näherungsweise beschreiben. Die Erweiterung solcher Ein-Kompartiment Modelle auf ein Zwei-Kompartiment Modell und die damit eingeführte Unterscheidung zwischen Soma und Dendrit ermöglicht es, für einzelne Neuronen sämtliche experimentell erhobenen Statistiken, einschließlich des Hochfrequenz- Transfers, quantitativ zu reproduzieren. Zusätzlich zu den obigen Untersuchungen wird eine Methode vorgestellt, um, anhand von Input-Output Statistiken konkreter Neurone, Gaußsche Stimuli zu berechnen, die in der jeweiligen Zelle einen vorgeschriebenen Pulszug hervorrufen. In Experimenten und Simulationen wird gezeigt, dass diese vorgeschriebenen Pulszüge mit einer Verlässlichkeit erzeugt werden können, die in etwa der intrinsischen Verlässlichkeit des untersuchten Neurons entspricht. / This work elaborates on the question to which extent experimental control about the activity of single cortical neurons can be achieved and deals with the theoretical description of the neuronal dynamics. To this end, in-vivo data that have been recorded from juxtacellular experiments in cortical neurons are used. By means of parameter optimization, simple neuron models are fitted in order to quantitatively reproduce the measured spike train statistics and specific action potential timings. The analysis reveals that dynamic noise-stimuli can be used in juxtacellular stimulation to reliably generate reproducible spike trains in single cortical neurons. The analysis also reveals that the cells show a marked broadband coding of information, up to frequencies that are multiples of the firing rate of the respective neuron. This is in contrast to what is known for the simplest (and most popular) integrate-and-fire models, for which the cellular dynamics are described by a single space-independent variable. The extension of these one-compartment models to two-compartment models introduces a spatially distinction between soma and dendrite and we could show that for particular neurons it is sufficient to quantitatively reproduce all experimentally measured spike-train and input-output statistics, including the highfrequency information-transfer. Therefore, the effect of the spatial structure can be an important (structural) mechanism that can have influence on the neuronal dynamics. Additionally to the above considerations, by means of input-output statistics of particular neurons, we propose a method to compute Gaussian stimuli that are supposed to evoke prescribed spike trains in the respective neuron. Using experiments and simulations, we show that the prescribed spike trains can be evoked with a reliability that is comparable to the intrinsic reliability of the neuron under investigation.
2

Theoretical mechanisms of information filtering in stochastic single neuron models

Blankenburg, Sven 16 August 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit Mechanismen, die in Einzelzellmodellen zu einer frequenzabhängigen Informationsübertragung führen können. Um dies zu untersuchen, werden Methoden aus der theoretischen Physik (Statistische Physik) und der Informationstheorie angewandt. Die Informationsfilterung in mehreren stochastischen Neuronmodellen, in denen unterschiedliche Mechanismen zur Informationsfilterung führen können, werden numerisch und, falls möglich, analytisch untersucht. Die Bandbreite der betrachteten Modelle erstreckt sich von reduzierten strombasierten ’Integrate-and-Fire’ (IF) Modellen bis zu biophysikalisch realistischeren leitfähigkeitsbasierten Modellen. Anhand numerischer Untersuchungen wird aufgezeigt, dass viele Varianten der IF-Neuronenmodelle vorzugsweise Information über langsame Anteile eines zeitabhängigen Eingangssignals übertragen. Der einfachste Vertreter der oben genannten Klasse der IF-Neuronmodelle wird dahingehend erweitert, dass ein Konzept von neuronalem ’Gedächtnis’, vermittelst positiver Korrelationen zwischen benachbarten Intervallen aufeinander- folgender Spikes, integriert wird. Dieses Model erlaubt eine analytische störungstheoretische Untersuchung der Auswirkungen positiver Korrelationen auf die Informationsfilterung. Um zu untersuchen, wie sich sogenannte ’unterschwelligen Resonanzen’ auf die Signalübertragung auswirken, werden Neuronenmodelle mit verschiedenen Nichtlinearitäten anhand numerischer Computersimulationen analysiert. Abschließend wird die Signalübertragung in einem neuronalen Kaskadensystem, bestehend aus linearen und nichtlinearen Elementen, betrachtet. Neuronale Nichtlinearitäten bewirken eine gegenläufige Abhängigkeit (engl. "trade-off") zwischen qualitativer, d.h. frequenzselektiver, und quantitativer Informations-übertragung, welche in allen von mir untersuchten Modellen diskutiert wird. Diese Arbeit hebt die Gewichtigkeit von Nichtlinearitäten in der neuronalen Informationsfilterung hervor. / Neurons transmit information about time-dependent input signals via highly non-linear responses, so-called action potentials or spikes. This type of information transmission can be frequency-dependent and allows for preferences for certain stimulus components. A single neuron can transmit either slow components (low pass filter), fast components (high pass filter), or intermediate components (band pass filter) of a time-dependent input signal. Using methods developed in theoretical physics (statistical physics) within the framework of information theory, in this thesis, cell-intrinsic mechanisms are being investigated that can lead to frequency selectivity on the level of information transmission. Various stochastic single neuron models are examined numerically and, if tractable analytically. Ranging from simple spiking models to complex conductance-based models with and without nonlinearities, these models include integrator as well as resonator dynamics. First, spectral information filtering characteristics of different types of stochastic current-based integrator neuron models are being studied. Subsequently, the simple deterministic PIF model is being extended with a stochastic spiking rule, leading to positive correlations between successive interspike intervals (ISIs). Thereafter, models are being examined which show subthreshold resonances (so-called resonator models) and their effects on the spectral information filtering characteristics are being investigated. Finally, the spectral information filtering properties of stochastic linearnonlinear cascade neuron models are being researched by employing different static nonlinearities (SNLs). The trade-off between frequency-dependent signal transmission and the total amount of transmitted information will be demonstrated in all models and constitutes a direct consequence of the nonlinear formulation of the models.

Page generated in 0.0185 seconds