21 |
Capacity Spectrum Method : Energy Based ApproachPatankar, Digvijay Babasaheb 01 1900 (has links) (PDF)
The capacity spectrum method is a very popular tool in the performance based earthquake resistant design of structures. Though it involves nonlinear static analysis, it can be used to predict the dynamic behaviour of the building under earthquake load. Since the analysis is only static and not dynamic, it is very well suited for the design offices and low end computer terminals as opposed to dynamic analysis which is very resource consuming.
There are several methods/variations of methods, to perform the nonlinear static analysis, popularly known as pushover analysis and convert it to capacity spectrum. Displacement based pushover analysis, force based pushover analysis, modal pushover analysis, energy based pushover analysis etc. are some of the variations of pushover analysis. There are a few attempts to consider the change in mode shape but all the methods are silent about the change in frequency due to formation of hinges in the structure. The available codes for building design such as ATC-40 provide some guidelines for getting the capacity spectrum but are not yet developed for proper ductility consideration while converting the pushover curve to capacity spectrum.
The present study tries to address the above issues while proposing a new energy based approach to draw capacity spectrum.
The chapter 1 introduces the concept of pushover analysis and capacity spectrum concepts. Different approaches to get these curves, their theoretical background, variations and limitations are discussed as a quick review.
Chapter 2 is about the review of literature present on these topics. It is found that most of the studies have been carried out in the past on the framed buildings regarding the pushover analysis. In the last few years attempts are also made to consider the effect of torsion.
Summarising the various contributions till now, it may be concluded that even in the earlier multimode pushover analysis the effect of different modes on the only static force distribution was considered. Further the spectral acceleration is obtained as a ratio of base shear and α times the weight of the building, where α is the modal mass coefficient. Only the first mode frequency could be utilized to convert the maximum displacement at the top to the spectral acceleration and the corresponding maximum potential energy (P.E.) could be used for equivalence of MDOF and SDOF. Therefore in chapter 3 which follows, the above limitation is removed as explained below.
In chapter 3, the new methodology based on energy equivalence consideration is proposed step by step. For the given multistorey building, a displacement profile is applied to the building which is proportional to the effective mode shape. The effective mode shape can be the first mode shape or a combination of first few mode shapes. In the present study, two cases are considered. In the first case, the effective mode shape is considered to be the first mode shape itself whereas in the second case the effective mode shape is considered to be a linear combination of first three modes weighted by corresponding participation factors. After this, a nonlinear static analysis is performed on the structure considering the above displacement profile. Due to the above provided displacement profile, there will be yielding in the structure at a few locations. The yielded structure is again analysed for eigenvalues and mode shapes and the first three mode shapes are extracted along with their participation factors. Again the deflected structure is subjected to the deflection proportional to the effective mode shape and the analysis is continued until the collapse. The chapter also describes the details of the model used for simulation. Two kinds of simulation are performed on the model. One is considering only single mode of vibration whereas the other is considering the multiple modes (3 in this case) of vibration of the structure.
Chapter 4 discusses the results of the simulations performed on the model. Single mode and multimode cases are treated and discussed separately.
The proposed method is in its nascent stage and hence a lot of modification and validation work is needed to consider the method acceptable. The chapter 5 concludes the overall outcome of the present study and provides scope for the further study.
|
22 |
Seismic Capacity Evaluation of Reinforced Concrete Buildings Using Pushover AnalysisSapkota, Suman January 2018 (has links)
No description available.
|
23 |
ANALISIS CONSTRUCTIVO Y ESTRUCTURAL DE LA IGLESIA DE SAN JUAN DEL HOSPITAL DE VALENCIAMazarredo Aznar, Luis María de 21 March 2016 (has links)
[EN] This work is placed at the confluence of two lines of research. On the one hand, the developed one concerning the architectural complex of the Church of San Juan del Hospital of Valencia, which has gone in depth into the geometric traces of the temple, into the interpretation of its walls and now the structural analysis is added. On the other hand, the study of the seismic response of Mediterranean Gothic buildings, in which the Cathedral of Valencia has already been examined and currently some works have been carried out on the Valencian Gothic churches of Santa Catalina, Santos Juanes and the present one based on San Juan del Hospital. The main objective of this research consists of determining the vulnerability of Mediterranean Gothic structures due to horizontal actions.
This research begins by making a study of the constructive evolution of the church of San Juan del Hospital over time, collecting its refurbishments, expansions, and existing documentation in the matter, as well as placing the state of the art in the structural analysis of the masonry.
Moreover, a calibration of the damage model that is being used is performed before analyzing structurally the temple. For this purpose, the results achieved with the damaged model are compared with experimental tests to validate them.
Prior to the structural analysis, the current state of the temple is determined, making a map of slopes and deformations at present. Subsequently, the structural system of the temple is described.
Several partial 3D models are made with finite elements in order to carry out the structural analysis. The research starts analyzing the influence of the variation of different mechanical properties of the materials, as well as different constructive dispositions in the response to earthquake of the structure by Pushover method. Then the complete model of the church is calculated by several analytical methods as a nonlinear analysis for gravitational loads and a nonlinear time-history analysis (dynamic). Finally the original situation of the temple is analyzed before it was expanded with several buttresses in the 14th century. It is necessary to extract all this information to make a proper structural analysis. / [ES] El presente trabajo se encuentra en la confluencia de dos líneas de investigación. Por un lado, la desarrollada en torno al conjunto de la Iglesia de San Juan del Hospital de Valencia, que ha profundizado en las trazas geométricas del templo, en la interpretación murária del mismo y a la que ahora se suma el análisis estructural. Por otro lado, un estudio de la respuesta del gótico mediterráneo frente al sismo, en el que se ha examinado la catedral de Valencia y ahora se están realizando trabajos sobre las iglesias góticas valencianas de Santa Catalina, los Santos Juanes y el presente sobre San Juan del Hospital. El objetivo principal de esta línea de investigación sería el de determinar el grado de vulnerabilidad de las estructuras del gótico mediterráneo frente a acciones horizontales.
Comienza el presente trabajo efectuando un estudio de la evolución constructiva de la iglesia de San Juan del Hospital a lo largo del tiempo, recogiendo sus intervenciones, ampliaciones, y documentación existente al respecto, así como situando el estado del arte en el análisis estructural de la fábrica.
Por otra parte y antes de analizar estructuralmente el templo, se realiza un calibrado del modelo de daño que se va a emplear, para ello se comparan los resultados obtenidos con el modelo de daño con ensayos experimentales para poder validar los resultados obtenidos.
Previo al análisis estructural se determina el estado actual del templo, realizando un mapa desplomes y deformaciones en el momento actual. Posteriormente se describe el sistema estructural del templo.
Para realizar el análisis estructural se realizan varios modelos parciales tridimensionales con elementos finitos y se comienza analizando la influencia de la variación de distintas características mecánicas de los materiales, así como de distintas disposiciones constructivas en la respuesta a sismo de la estructura por el método Pushover. A continuación se somete al modelo completo de la iglesia a un cálculo no lineal frente a cargas gravitatorias. Por último se analiza la situación original del templo antes de la ampliación de una serie de contrafuertes en el S. XIV. De todo ellos se extraen los datos necesarios para realizar el análisis estructural. / [CA] El present treball es troba en la confluència de dues línies d'investigació. D'una banda, la desenvolupada entorn del conjunt de l'Església de Sant Joan de l'Hospital de València, que ha aprofundit en les traces geomètriques del temple, en la interpretació murària del mateix i a la qual ara se suma l'anàlisi estructural. D'altra banda, un estudi de la resposta del gòtic mediterrani enfront del sisme, en el qual s'ha examinat la Catedral de València i ara s'estan realitzant treballs sobre les esglésies gòtiques valencianes de Santa Catalina, els Santos Juanes i el present trebal sobre Sant Joan de l'Hospital. L'objectiu principal d'aquesta línia d'investigació és el de determinar el grau de vulnerabilitat de les estructures del gòtic mediterrani enfront d'accions horitzontals.
Aquesta investigació comença efectuant un estudi de l'evolució constructiva de l'església de Sant Joan de l'Hospital al llarg del temps, arreplegant les seues intervencions, ampliacions, i documentació existent respecte d'això, així com situant l'estat de l'art en l'anàlisi estructural de la fàbrica.
D'altra banda i abans d'analitzar estructuralment el temple, es realitza un calibrat del model de dany que es va a emprar, per a açò es comparen els resultats obtinguts amb el model de dany amb assajos experimentals per a poder validar-los.
Previ a l'anàlisi estructural es determina l'estat actual del temple, realitzant un mapa de desplomes i deformacions en el moment actual. Posteriorment es descriu el sistema estructural del temple.
Per a efectuar l'anàlisi estructural es realitzen diversos models parcials tridimensionals amb elements finits i es comença analitzant la influència de la variació de diferents característiques mecàniques dels materials, així com de distintes disposicions constructives en la resposta a sisme de l'estructura pel mètode Pushover. A continuació se sotmet el model complet de l'església a un càlcul no lineal enfront de càrregues gravitatòries i a un càlcul no lineal dinàmic en el temps. Finalment s'analitza la situació original del temple abans de l'ampliació d'una sèrie de contraforts en el S. XIV. De tot açò s'extrauen les dades necessàries per a realitzar l'anàlisi estructural. / Mazarredo Aznar, LMD. (2016). ANALISIS CONSTRUCTIVO Y ESTRUCTURAL DE LA IGLESIA DE SAN JUAN DEL HOSPITAL DE VALENCIA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61996
|
24 |
Análisis y diseño estructural de una torre de 40 pisos y 4 sótanos siguiendo normas peruanas incluyendo su desempeño sísmico en el distrito de Santiago de Surco, Lima / Analysis and structural design of a tower 40 stories and 4 basements following peruvian norms including its seismic performance in the district de Santiago de Surco, LimaFernández López, Rodrigo Miguel, Zapata Velásquez, Ricardo Timoteo 04 November 2019 (has links)
En la presente investigación se realiza el análisis y diseño estructural de una torre de 40 pisos y 4 sótanos de concreto armado siguiendo normas peruanas y el cálculo de su nivel de desempeño sísmico en el distrito de Santiago de Surco, Lima. Para esto, la hipótesis plantea que las normas peruanas cumplen con el desempeño sismorresistente deseado para esta torre alta.
Para un entendimiento progresivo, primero se hará una descripción de la torre alta a estudiar, su arquitectura, suelo entre otros. En la segunda parte se dan los conceptos necesarios para comprender los tipos de análisis lineal estático, lineal dinámico y no lineal estático. Se definen los materiales, los diagramas momento – rotación para luego explicar la obtención de la curva de capacidad del edificio. Se tocan conceptos de desempeño y viento. En la tercera parte, se procede con en análisis sísmico usando las exigencias de sismorresistencia, también se hace el análisis por viento para finalmente comparar ambos efectos. En el capítulo cuarto se procede a hacer el diseño estructural usando las normas de concreto armado. En el capítulo cinco se hace el análisis por desempeño usando el método pushover para finalmente conseguir los resultados de este proyecto y a las conclusiones de este desarrollo. / In the present investigation, the analysis and structural design of a 40-story tower and 4 basements of reinforced concrete are carried out following Peruvian standards and the calculation of its level of seismic performance in the district of Santiago de Surco, Lima. For this, the hypothesis states that Peruvian standards comply with the seismic-resistant performance desired for this high tower.
For a progressive understanding, first a description will be made of the tall tower to be studied, its architecture, ground among others. In the second part, the concepts necessary to understand the types of static linear, dynamic linear and static nonlinear analysis are given. The materials are defined, the moment - rotation diagrams and then explain the obtaining of the building capacity curve. Performance and wind concepts are touched. In the third part, we proceed with seismic analysis using the seismic resistance requirements, the wind analysis is also done to finally compare both effects. In the fourth chapter the structural design is done using the reinforced concrete standards. In chapter five the performance analysis is done using the pushover method to finally get the results of this project and the conclusions of this development. / Tesis
|
25 |
Comparación de la vulnerabilidad sísmica de edificios de concreto armado de 35 pisos con núcleo rígido, con amortiguadores de fluido viscoso y disipadores SLB, mediante el análisis modal pushover en la ciudad de Lima / Comparison of the seismic vulnerability of 35-story reinforced concrete buildings with a rigid core, with viscous fluid dampers and SLB dissipators, using pushover modal analysis in Lima cityArita Claros, Luis Humberto, Lezameta Navarro, Rodrigo André 15 January 2021 (has links)
Actualmente en la ciudad de Lima existe un número limitado de edificios de gran altura. Por lo que no existe mucha literatura de este tipo de edificaciones en Perú. Los códigos peruanos se enfocan en edificios de mediana y baja altura. Por ello, se requiere realizar estudios más detallados para analizar y diseñar de forma más adecuada estas edificaciones altas según la realidad del país. En el presente artículo, se desarrollará el análisis modal pushover a 6 tipos de edificaciones de concreto armado de 35 niveles en la ciudad de Lima.
Se plantea 3 modelos de edificación con distinto sistema estructural y con diferentes plantas (cuadrada y rectangular), siendo las áreas de 29m x 29m y 52m x 26m respectivamente. Estos sistemas estructurales son de núcleo rígido y pórticos con sistema de disipación de energía (amortiguadores de fluido viscoso y disipadores SLB) con objetivo de estudiar su comportamiento frente a solicitaciones sísmicas. Estas edificaciones se establecieron en función de los criterios y requerimientos de los códigos vigentes en el país, como también, distribución de la planta de edificaciones comúnmente usadas para oficinas y viviendas.
Se encontró que los periodos naturales oscilan entre 2.6 a 3.3 segundos para edificios de núcleo rígido, se presenta un incremento para los edificios de amortiguamiento viscoso de 4.2 a 5.4 segundos y también para los de dispositivos SLB oscilan en un rango de 3.7 a 4.6 segundos. Se realizó, a su vez, un análisis no lineal estático modal para obtener las curvas de capacidad para cada tipo de edificación, las cuales fueron comparadas con las demandas sísmicas según las provisiones de diseño de la norma peruana sísmica E.030 y un promedio de espectros de registros de aceleraciones de eventos sísmicos severos en Perú y escalados en un rango de 0.2T a 1.5T.
Finalmente, se determinó los puntos de desempeño para cada caso de edificación siguiendo las metodologías del ATC-40 encontrando que los edificios altos con núcleo rígido presentan aproximadamente el doble de rigidez que los edificios con sistema de disipación de energía, como también, presentan poca ductilidad a diferencia con los edificios con disipadores que presentan una larga ductilidad. / Currently in Lima city there is a limited number of high-rise buildings. So, there isn’t much literature on this type of building in Peru. Peruvian codes focus on medium and low-rise buildings. Therefore, more detailed studies are required to analyze and design these tall buildings more appropriately according to the reality of the country. In this thesis, the modal pushover analysis of 6 types of 35-story reinforced concrete buildings in Lima city will be developed.
Three building models with different structural system and with different plan (square and rectangular) are proposed, being their areas of 29m x 29m and 52m x 26m respectively. These structural systems are rigid core and frames with an energy dissipation system (viscous fluid dampers and SLB dissipators) in order to study their behavior against seismic stresses. These buildings were established based on the criteria and requirements of the current codes in the country, as well as, the distribution of the floors of buildings commonly used for offices and homes.
Natural periods were found to range from 2.6 to 3.3 seconds for rigid core buildings, there is an increase for viscous damping buildings from 4.2 to 5.4 seconds and also for SLB devices to range from 3.7 to 4.6 seconds. In turn, a modal static nonlinear analysis was performed to obtain the capacity curves for each type of building, which were compared with the seismic demands according to the design provisions of the Peruvian seismic code E.030 and an average of spectra of acceleration records of severe seismic events in Peru and scaled in a range of 0.2T to 1.5T.
Finally, the performance points for each building case were determined following the ATC-40 methodologies, finding that tall buildings with a rigid core have approximately twice the stiffness of buildings with an energy dissipation system, as well as having low ductility. unlike buildings with dissipators that have long ductility. / Tesis
|
26 |
Análisis de riesgo sísmico de colegios públicos de San Juan de Miraflores mediante la metodología de Rapid Visual Screening y evaluación del desempeño sísmico con análisis no-lineales del pabellón 780 PreCardenas Angeles, Omar Percy, Farfán Bonett, Aaron Gabriel 16 January 2021 (has links)
Perú se localiza en una zona de alta sismicidad, debido a que se encuentra encima del área de subducción entre la placa tectónica de Nazca y Sudamericana, perteneciente al cinturón de fuego del Pacífico. Perú es un país en vía de desarrollo, por lo que es de suma importancia estar preparados para auxiliar a los miles de damnificados que pueda haber ante un evento sísmico importante. La evaluación del riesgo sísmico de edificaciones esenciales como colegios y hospitales es necesario para trabajos de reforzamiento estructural en este tipo de infraestructura. En el presente artículo científico, se presenta cuán vulnerables son los colegios públicos del distrito de San Juan de Miraflores en la ciudad de Lima ante un evento sísmico. Para ello, se utilizó la metodología de Inspección Visual Rápida del FEMA P-154. Además, se analizó de forma cuantitativa el pabellón 780 Pre, un módulo educativo estandarizado y construido en los años noventa cuya presencia es frecuente en dicho distrito. Para ello, se realizó un análisis no-lineal estático y no-lineal dinámico. Los resultados de la investigación concluyen que la mayoría de las edificaciones educativas presentan una alta vulnerabilidad sísmica y no cumplen con los requerimientos de uso post-sismo como se exige en la norma sismorresistente; así como también se verificó la deficiencia del módulo 780 Pre frente a un sismo severo cuando este fue sometido a los análisis no-lineales. / Peru is located in a high seismicity zone because it is set above the subduction area between the Nazca and South American tectonic plates, both belonging to the Pacific’s Ring of Fire. Being a developing country, it is of utmost importance to be prepared to help the thousands of victims that may be in the face of a major seismic event. The assessment of the seismic vulnerability of essential buildings —such as schools and hospitals— is necessary for structural reinforcement procedures in this type of infrastructure if needed. In this thesis, it is presented how vulnerable are the public schools of the district of San Juan de Miraflores in the city of Lima to a seismic event. For this, the FEMA P-154 Rapid Visual Screening methodology was used. In addition, the “780 Pre” public school building, a standardized educational building built in the 1990s and whose presence is frequent in that district, was analyzed quantitatively. For this, a static nonlinear and dynamic nonlinear analysis were performed. The results of the investigation show that most of the educational buildings present high seismic vulnerability and do not meet the requirements of post-earthquake use as required by the Peruvian seismic design provisions. Also, the deficiency of the 780 Pre building against a severe earthquake when it was subjected to non-linear analyzes was verified. / Tesis
|
27 |
A Parametric Study On The Influence Of Semi-rigid Connection Nonlinearity On Steel Special Moment FramesMetin, Tolga 01 February 2013 (has links) (PDF)
In practice, steel frames are analyzed and designed by assuming all beam to column
connections as either rigid or simple. In real life, there are no such idealizations as rigid or simple and
all connections would actually belong to a group of connections named as semi rigid connections.
Various difficulties exist in modeling an accurate non-linear behavior of a steel structure,
where one of these challenges is the modeling of semi-rigid behavior of connections. A detailed finite
element model would take into account the complex interaction between all surfaces due to contact,
friction and bolt pretension besides the material and geometrical nonlinearity effects. All these
nonlinearity effects could be simply lumped as a moment-rotation type model at the connection
region. Such a methodology is followed in this thesis and the main aim is to study the lumped
nonlinear behavior of steel semi-rigid connections on the overall structural responses of steel Special
Moment Frames.
In this thesis three, nine and fifteen story steel Special Moment Frames are analyzed and
designed as rigid frames first, and then the frames are reanalyzed considering non-linear effects due to
semi-rigid connections. Changes in the ductility and overstrength reduction factors obtained from
pushover curves are compared between the rigid and semi rigid modeling alternatives.
|
28 |
Seismic Performance Assessment of Multi-Storey Buildings with Cold Formed Steel Shear Wall SystemsMartinez Martinez, Joel January 2007 (has links)
Cold-Formed Steel (CFS) is a material used in the fabrication of structural and non-structural elements for the construction of commercial and residential buildings. CFS exhibits several advantages over other construction materials such as wood, concrete and hot-rolled steel (structural steel). The outstanding advantages of CFS are its lower overall cost and non-combustibility. The steel industry has promoted CFS in recent decades, causing a notable increase in the usage of CFS in building construction. Yet, structural steel elements are still more highly preferred, due to the complex analysis and design procedures associated with CFS members. In addition, the seismic performance of CFS buildings and their elements is not well known.
The primary objective of this study is to develop a method for the seismic assessment of the lateral-load resistant shear wall panel elements of CFS buildings. The Performance-Based Design (PBD) philosophy is adopted as the basis for conducting the seismic assessment of low- and mid-rise CFS buildings, having from one to seven storeys. Seismic standards have been developed to guide the design of buildings such that they do not collapse when subjected to specified design earthquakes. PBD provides the designer with options to choose the performance objectives to be satisfied by a building to achieve a satisfactory design. A performance objective involves the combination of an earthquake (i.e., seismic hazard) and a performance level (i.e., limit state) expected for the structure. The building capacity related to each performance level is compared with the demand imposed by the earthquake. If the earthquake demand is less than the building capacity, the structure is appropriately designed.
The seismic performance of a CFS building is obtained using pushover analysis, a nonlinear method of seismic analysis. This study proposes a Simplified Finite Element Analysis (SFEA) method to carry out the nonlinear structural analysis. In this study, lateral drifts associated with four performance levels are employed as acceptance criteria for the PBD assessment of CFS buildings. The lateral drifts are determined from experimental data.
In CFS buildings, one of the primary load-resistant elements is Shear Wall Panel (SWP). The SWP is constructed with vertically spaced and aligned C-shape CFS studs. The ends of the studs are screwed to the top and bottom tracks, and structural sheathing is installed on one or both sides of the wall. For the analysis of CFS buildings, Conventional Finite Element Analysis (CFEA) is typically adopted. However, CFEA is time consuming because of the large number of shell and frame elements required to model the SWP sheathing and studs. The SFEA proposed in this study consists of modeling each SWP in the building with an equivalent shell element of the same dimensions; that is, a complete SWP is modeled by a 16-node shell element. Thus, significantly fewer elements are required to model a building for SFEA compared to that required for CFEA, saving both time and resources. A model for the stiffness degradation of a SWP is developed as a function of the lateral strength of the SWP. The model characterizes the nonlinear behaviour of SWP under lateral loading, such that a realistic response of the building is achieved by the pushover analysis.
The lateral strength of a SWP must be known before its seismic performance can be assessed. In current practice, the lateral strength of a SWP is primarily determined by experimental tests due to the lack of applicable analytical methods. In this investigation, an analytical method is developed for determining the ultimate lateral strength of SWP, and associated lateral displacement. The method takes into account the various factors that affect the behaviour and the strength of SWP, such as material properties, geometrical dimensions, and construction details.
To illustrate the effectiveness and practical application of the proposed methodology for carrying out the PBD assessment of CFS buildings, several examples are presented. The responses predicted by the SFEA are compared with responses determined experimentally for isolated SWP. In addition, two building models are analyzed by SFEA, and the results are compared with those found by SAP2000 (2006). Lastly, the PBD assessment of two buildings is conducted using SFEA and pushover analysis accounting for the nonlinear behaviour of the SWP, to demonstrate the practicality of the proposed technology.
|
29 |
Seismic Performance Assessment of Multi-Storey Buildings with Cold Formed Steel Shear Wall SystemsMartinez Martinez, Joel January 2007 (has links)
Cold-Formed Steel (CFS) is a material used in the fabrication of structural and non-structural elements for the construction of commercial and residential buildings. CFS exhibits several advantages over other construction materials such as wood, concrete and hot-rolled steel (structural steel). The outstanding advantages of CFS are its lower overall cost and non-combustibility. The steel industry has promoted CFS in recent decades, causing a notable increase in the usage of CFS in building construction. Yet, structural steel elements are still more highly preferred, due to the complex analysis and design procedures associated with CFS members. In addition, the seismic performance of CFS buildings and their elements is not well known.
The primary objective of this study is to develop a method for the seismic assessment of the lateral-load resistant shear wall panel elements of CFS buildings. The Performance-Based Design (PBD) philosophy is adopted as the basis for conducting the seismic assessment of low- and mid-rise CFS buildings, having from one to seven storeys. Seismic standards have been developed to guide the design of buildings such that they do not collapse when subjected to specified design earthquakes. PBD provides the designer with options to choose the performance objectives to be satisfied by a building to achieve a satisfactory design. A performance objective involves the combination of an earthquake (i.e., seismic hazard) and a performance level (i.e., limit state) expected for the structure. The building capacity related to each performance level is compared with the demand imposed by the earthquake. If the earthquake demand is less than the building capacity, the structure is appropriately designed.
The seismic performance of a CFS building is obtained using pushover analysis, a nonlinear method of seismic analysis. This study proposes a Simplified Finite Element Analysis (SFEA) method to carry out the nonlinear structural analysis. In this study, lateral drifts associated with four performance levels are employed as acceptance criteria for the PBD assessment of CFS buildings. The lateral drifts are determined from experimental data.
In CFS buildings, one of the primary load-resistant elements is Shear Wall Panel (SWP). The SWP is constructed with vertically spaced and aligned C-shape CFS studs. The ends of the studs are screwed to the top and bottom tracks, and structural sheathing is installed on one or both sides of the wall. For the analysis of CFS buildings, Conventional Finite Element Analysis (CFEA) is typically adopted. However, CFEA is time consuming because of the large number of shell and frame elements required to model the SWP sheathing and studs. The SFEA proposed in this study consists of modeling each SWP in the building with an equivalent shell element of the same dimensions; that is, a complete SWP is modeled by a 16-node shell element. Thus, significantly fewer elements are required to model a building for SFEA compared to that required for CFEA, saving both time and resources. A model for the stiffness degradation of a SWP is developed as a function of the lateral strength of the SWP. The model characterizes the nonlinear behaviour of SWP under lateral loading, such that a realistic response of the building is achieved by the pushover analysis.
The lateral strength of a SWP must be known before its seismic performance can be assessed. In current practice, the lateral strength of a SWP is primarily determined by experimental tests due to the lack of applicable analytical methods. In this investigation, an analytical method is developed for determining the ultimate lateral strength of SWP, and associated lateral displacement. The method takes into account the various factors that affect the behaviour and the strength of SWP, such as material properties, geometrical dimensions, and construction details.
To illustrate the effectiveness and practical application of the proposed methodology for carrying out the PBD assessment of CFS buildings, several examples are presented. The responses predicted by the SFEA are compared with responses determined experimentally for isolated SWP. In addition, two building models are analyzed by SFEA, and the results are compared with those found by SAP2000 (2006). Lastly, the PBD assessment of two buildings is conducted using SFEA and pushover analysis accounting for the nonlinear behaviour of the SWP, to demonstrate the practicality of the proposed technology.
|
30 |
Inelastic Deformation Demands On Moment-resisting Frame StructuresMetin, Asli 01 August 2006 (has links) (PDF)
Interstory drift ratio is an important parameter for the determination of the structural performance under strong ground motions. A probabilistic procedure is proposed in this study to estimate the inelastic maximum interstory drift ratio. The procedure considers the uncertainties associated with the strong ground motions and structural behavior. Elastic and inelastic response history analyses of reinforced-concrete, moment-resisting frames are used together with a near-fault strong ground motion data set to derive the probabilistic procedure. The elastic and inelastic response history analysis results are evaluated in a statistical manner to present the probabilistic approach proposed here. The method presented basically makes use of the fundamental mode properties of the frame systems and modifies the elastic maximum interstory drift ratio by a modifying factor that is determined from the idealized lateral strength capacity (pushover analysis) of the structure. As a part of this thesis, the performance of recently improved nonlinear static procedures that are used in estimating the deformation demands on structural systems are also evaluated using the single- and multi-degree-of-freedom response history analyses results obtained during the conduct of the study.
|
Page generated in 0.0735 seconds