• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 10
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vidareutveckling av PV/T-receiver för koncentrerat solljus

Fjällström, Viktor January 2010 (has links)
The rising demand for electricity and heat raises a big challange for the society and engineers. Many products have been introduced to the market to supply more energy to the energy systems. Absolicon AB is a Swedish company that develops and markets a combined heat and power generating product. The product, Absolicon X10, uses a parabolic trough to concentrate the radiation of the sun onto a receiver. The receiveris equipped with mono crystalline solar cells and is cooled by a circulating liquid media. The electricity is supplied to the local grid and the heat is supplied to a local heating system. In this master thesis, the author has developed a number of tests for the Absolicon X10 with the superior goal to enhance the quality and electrical performance. The main areas of interest were: The ribbon connecting the solar cells The correlation between indoor and outdoor performance How the position of the receiver in the trough affects the electrical output A test method for evaluation of ribbons was developed and was applied to a new type of ribbon. The method showed that this new type of ribbon was not good enough for implementation in the production chain. Two types of indoor testing methods were developed, with the aim of determine the electrical performance of receivers. Both methods were unable to do so, but one of them might be good enough with some improvements. A position of the receiver which gives higher electrical output and higher tolerance for the tilt angle of the through was found.
2

THE DEVELOPMENT AND APPLICATION OF A SIMPLIFIED THERMAL PERFORMANCE EQUATION FOR A SHEET-AND-TUBE PHOTOVOLTAIC THERMAL COMBI-PANEL

Carriere, JARRETT 22 January 2013 (has links)
PV/Thermal technology is the combination of solar thermal and photovoltaics - two mature and widely understood technologies. Combining the two technologies complicates existing standardized rating procedures and performance modeling methods. Currently a standardized performance test method does not exist for PV/Thermal (PV/T) panels. Existing and developing PV/T panels are commonly tested using separate standardized solar thermal and photovoltaic test procedures. Solar thermal performance is rated in terms of temperature difference whereas photovoltaic performance is dependent on absolute temperature level. The thermal and electrical performance of a PV/T panel is, however, coupled so performance equations derived using traditional test methods may not accurately reflect the performance of a combined PV/T panel over a wide range of conditions. The purpose of this work was to develop an efficiency equation for a PV/T panel which can be derived from a minimal amount of empirical test data and still accurately predict its thermal and electrical performance over a wide range of conditions. To accomplish this, a quasi- 3-dimensional steady-state model of a sheet-and-tube PV/T collector was developed and used to generate a broad data set from which a simplified PV/T performance equation was developed. Using this numerically generated data set, and introducing additional coefficients into the traditional solar thermal performance characteristic, a modified PV/T efficiency equation was derived which expressed the electrical and thermal efficiency in terms of ambient temperature, incident solar irradiation and the temperature difference between the inlet fluid and the ambient. It was also shown, for the case studied, that the efficiency equation can be produced from as few as 6 data points and still accurately predicts the performance at a wide range of operating conditions. A TRNSYS [1] model was developed to demonstrate how the performance equation can be used to simulate the annual performance of a PV/T collector in a domestic hot water system. It was shown that a performance equation, derived from 6 data points, performed as well as a performance map which used over 1000 data points. The annual thermal and electrical production predicted by both models was within 1.5% of each other. The PV/T efficiency equations were also shown to perform well for a range of electrical parameters, thermal properties and substrate thermal conductivity values. Future work is recommended to validate the PV/T performance equation using real empirically derived data for a range of collector designs. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-01-22 15:40:03.337
3

Performance Evaluation of the Solarus AB Asymmetric Concentrating Hybrid PV/T Collector

Moreno Puerto, Jose January 2014 (has links)
The energy sector is currently in a state of change as conventional energy sources are questioned by the need of new clean and sustainable energy sources to satisfy the global energy demand in the long term. Renewable energies respond to this increasing demand and solar energy is an advanced example of them. Photovoltaic modules are experiencing a steady reduction in their production costs. It is needed that this trend continues and, along with it, their propagation and expansion in the market continues. One way of reducing production costs is by using inexpensive light concentrators to increase the output of the costly photovoltaic cell. In this respect, the Solarus AB hybrid PV/T collector has been designed based on this principle. This collector is a CPC (Compound Parabolic Collector) and belongs to the MaReCo (Maximum Reflector Collector) family. The aim of this thesis is to deeply investigate this technology in two main areas. Firstly, the collector will be tested both electrically and thermally in order to evaluate its performance. To do so, a solar test rig has been built and connected at the building Hall 45 of Högskolan i Gävle, Gävle, Sweden. The second main area of investigation of this thesis is to determine the optimal price for the Solarus AB hybrid PV/T collector in order to be competitive in the solar energy market. This study will be based in the current market prices of photovoltaic and thermal collectors. Regarding the electrical performance of the collector, the results obtained show that the front side of the receiver produces more electricity throughout the day than the reflector side. This has guided Solarus AB to decide to change the design of its receiver to improve its performance. With the current design, it has been obtained a peak power at STC of 220W. In relation with the thermal part, the heat losses of the collector have been estimated obtaining a U value of 6,8W/(m2*K), a thermal optical beam efficiency of 63,5% and a total optical beam efficiency of 74,5%. The price market study of photovoltaic and thermal collector has shown that 2m2 of the Solarus AB hybrid PV/T collector produces approximately the same annual electricity and heat as 1,1m2 of a photovoltaic module with an efficiency of 15,5% and a flat plate collector of 0,85m2 of aperture area. According to the market study, its cost is equivalent to 190€ for the PV module and 220€ for the flat plate collector. This means that the price of the Solarus AB hybrid PV/T collector should be lower than 410€.
4

Thermal and Electrical Performance Evaluation of PV/T Collectors in UAE

Kaya, Mustafa January 2013 (has links)
Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, thermal and electrical performance of PV/T collectors are analyzed and presented for the climate of RAK, UAE. Thermal performance evaluation is done following the collector output model presented in European standard EN 12975-2 and electrical performance evaluation is done by analyzing the effect of water circulation on the performance of PV/T collectors. Additionally, a PV/T system is designed for residential use in UAE and simulated using simulation software Polysun. Power output and requirements of the system along with its financial analysis is presented. Alternative solar energy systems to PV/T system are analyzed in terms of power output, specific requirements and financial analyses. Finally, a study is made to reveal the impact of incentives towards sustainable energy systems on the economic feasibility of PV/T systems for residential use in UAE. / <p>The project is done in cooperation with CSEM-uae under local supervision of Mr. Manoj Kumar Pokhrel.</p>
5

Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope / Modélisation et simulation d'une enveloppe photovoltaique/thermique intégrée au bâtiment (PVIB/T) ventilé

Saadon, Syamimi 12 June 2015 (has links)
La demande d'énergie consommée par les habitants a connu une croissance significative au cours des 30 dernières années. Par conséquent, des actions sont menées en vue de développement des énergies renouvelables et en particulier de l'énergie solaire. De nombreuses solutions technologiques ont ensuite été proposées, telles que les capteurs solaires PV/T dont l'objectif est d'améliorer la performance des panneaux PV en récupérant l’énergie thermique qu’ils dissipent à l’aide d’un fluide caloporteur. Les recherches en vue de l'amélioration des productivités thermiques et électriques de ces composants ont conduit à l'intégration progressive à l’enveloppe des bâtiments afin d'améliorer leur surface de captation d’énergie solaire. Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BIPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants et en particulier les composants cristallins, influence sensiblement leur efficacité ainsi que leur durée de vie. Ceci est donc d’autant plus vrai en configuration d’intégration. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. Ce travail porte sur la simulation numérique d'une façade PV partiellement transparente et ventilée, conçu pour le rafraichissement en été (par convection naturelle) et pour la récupération de chaleur en hiver (par ventilation mécanique). Pour les deux configurations, l'air dans la cavité est chauffé par la transmission du rayonnement solaire à travers des surfaces vitrées, et par les échanges convectif et radiatif. Le système est simulé à l'aide d'un modèle multi-physique réduit adapté à une grande échelle dans des conditions réelles d'exploitation et développé pour l'environnement logiciel TRNSYS. La validation du modèle est ensuite présentée en utilisant des données expérimentales du projet RESSOURCES (ANR-PREBAT 2007). Cette étape a conduit, dans le troisième chapitre du calcul des besoins de chauffage et de refroidissement d'un bâtiment et l'évaluation de l'impact des variations climatiques sur les performances du système. Les résultats ont permis enfin d'effectuer une analyse énergétique et exergo-économique. / The demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis.
6

Optimisation biénergie d'un panneau solaire multifonctionnel : du capteur aux installations in situ / Bienergetical optimisation for a multifunctional solar panel : from module to in situ installations

Brottier, Laetitia 29 March 2019 (has links)
Dans un contexte de lutte contre le réchauffement climatique, le bâtiment est un secteur stratégique du fait de sa forte consommation de chaleur et d’électricité. Le solaire, thermique et photovoltaïque, a de forts atouts pour répondre à cet enjeu avec une compétitivité qui s’accélère. En particulier, le solaire hybride PVT est prometteur avec un double gain : l’extraction de la chaleur sous le module photovoltaïque apporte à la fois un gain de rendement électrique, et un gain de par l’utilisation de cette chaleur pour les besoins du bâtiment. L’état de l’art permet de toucher du doigt la diversité des concepts de solaire hybride, et le PVT plan non survitré à eau a été retenu dans cette thèse. Pour faire face à des problématiques de durabilité et de performance, DualSun a conçu un module hybride avec un échangeur en acier inoxydable directement laminé pendant le process du module photovoltaïque.L’analyse de ces capteurs est faite en Partie I, d’abord avec un modèle 3D de l’échangeur. Ce modèle permet de déterminer des débits minimaux, de quantifier l’intérêt à ne pas isoler les bords du module et de visualiser que la perte de charge pour ce concept est principalement liée aux entrées et sorties du module mais reste tout à fait acceptable. Devant les limitations en termes de périmètre et de temps de calcul de ce modèle 3D, des modèles simplifiés sont proposés et comparés. Les résultats de ces modèles simplifiés corroborent une température de stagnation du concept DualSun de l’ordre de 75°C, ce qui confirme que le design est intrinsèquement résiliant à la surchauffe même en l’absence de besoins. Enfin les performances thermiques sur 9 prototypes avec des variations de composition couche par couche ont confirmé que le modèle est robuste. La puissance thermique(non isolé) est de 758W thermique pour un besoin à 30°C et la puissance photovoltaïque de 250Wc électrique dans des conditions extérieures standards (STC).Une analyse système de ces modules intégrés dans un ensemble complexe est réalisée dans la Partie II. Pour le système dit préchauffage d’eau sanitaire en maison individuelle (CESI), les quatre logiciels PVSyst, PVGis, Polysun, Solo sont comparés au logiciel Trnsys avec les Type 295 et Type 816 qui intègrent les deux modèles simplifiés du module définis dans la partie I. Les modèles physiques de ces logiciels sont cohérents entre eux dans le domaine d’utilisation.Les résultats de ces logiciels utilisés à partir de données statistiques pour la météo et les habitudes de consommation sont comparés à des mesures terrain sur 28 installations CESI hybride chez des particuliers. L’objectif a été de quantifier les erreurs d’estimation des prédictions statistiques par rapport au réel. Si l’écart type sur productible photovoltaïque et les températures maximales atteinte par les modules reliés à l’incertitude sur la météo est faible (environ 10%), l’écart type sur l’estimation du besoin sur la base d’un volume moyen consommé est beaucoup plus forte (de l’ordre de 30%) du fait d’un comportement très irrégulier de consommation chez les particuliers en terme d’heure et de volume de puisage en fonction des jours. Les températures moyennes atteintes au niveau des modules sont supérieures à 45°C pendant la moitié de l’année et permettent un préchauffage effectif du ballon sanitaire. Des couvertures solaires des besoins d’eau chaude de 57-58% sont mesurées près de Lyon.Dans le chauffage d’eau sanitaire collectif en couplage pompe à chaleur (HP+) ou en chauffage piscine (SP), les modèles statistiques permettent une évaluation des productibles du fait d’une stabilité des besoins.En conclusion, le solaire hybride devrait être une technologie clé de la transition énergétique pour les bâtiments dans les années à venir, sa compétitivité avec le vecteur électrique est déjà réelle. La technologie est appelée à évoluer pour réduire ses coûts d’année en année à l’instar du photovoltaïque et renforcer ainsi son positionnement face au gaz. / In the context of the fight against climate change, the building is a strategic sector to address because of its high consumption of heat and electricity. Solar energy, both thermal and photovoltaic, has strong assets to meet this challenge and is becoming more and more cost-competitive. In particular, the PVT hybrid solar is a promising solution with a double advantage: the extraction of heat under the photovoltaic module brings both a gain in electrical efficiency, and a gain by generating heat for the needs of the building. The state of the art demonstrates the diversity of solar hybrid technologies, and this thesis specifically addresses the unglazed flat-plate design with water as the heat transfer fluid. To address sustainability and performance issues, the company DualSun designed a PVT hybrid module with a stainless steel heat exchanger directly laminated during the photovoltaic module process.The analysis of the DualSun collector is done in Part I, first with a 3D model of the exchanger. This model makes it possible to determine minimum flows, to quantify the interest not to insulate the edges of the module and to visualize that the pressure drop for this concept is mainly related to the inlets and outlets of the module but remains acceptable. Given the limitations in terms of scope and calculation time of this 3D model, simplified models are proposed and compared. The results of these simplified models corroborate a stagnation temperature of the DualSun concept of around 75°C, which confirms that the design is intrinsically resilient to overheating even in the absence of hot water consumption. Finally, thermal performance on 9 prototypes with layer-by-layer composition variations confirm that the model is robust. The models demonstrate that the 250Wp non-insulated version of the PVT panel has a thermal power output of 758 Wth for hot water needs at 30°C.A system analysis of these modules integrated in a complex system is carried out in Part II. For the preheating Domestic Hot Water system (DHW), four software programs, PVSyst, PVGis, Polysun, Solo are compared to Trnsys with the Type 295 and Type 816, which integrate the two simplified models of the module defined in the section I. The physical models of these software programs are consistent with each other in the field of use.The results of these software programs used from statistical data for the weather and consumption habits are compared to field measurements on 28 DHW (domestic hot water) hybrid installations in private homes. The objective was to quantify the errors of estimation of the statistical predictions with respect to the reality. While the standard deviation of PV output and maximum temperatures reached by the modules related to the uncertainty on the weather is low (about 10%), the standard deviation of estimated hot water needs based on an average consumption is much higher (about 30%) because of irregular consumption behavior in individuals in terms of time and volume depending on the days. The average temperatures reached at the level of the modules are higher than 45°C during half of the year and allow an effective preheating of the sanitary tank. Solar covering of hot water needs of 57-58% are measured near Lyon.For combined solar and heat pump (HP+) systems in multi-dwelling buildings and for pool heating (SP) systems, statistical models allow a reliable evaluation of the energy production because of stable hot water needs.In conclusion, solar hybrid should be a key technology for the energy transition of buildings in the coming years. PVT technology will evolve to reduce costs from year to year as observed with photovoltaic technology and thus strengthen its cost-competitive position against gas as a heat source for homes and buildings.
7

Utvärdering av PV/T i Sverige : PV/T som alternativ till PV och som energiprestandaförbättrande åtgärd / Evaluation of PV/T technology in Sweden

Widéen, Eric, Tsantaridis, Dimitrios January 2019 (has links)
This master thesis was performed for the consulting firm WSP in collaboration with the think tank Besmå. The main aim of the thesis was to examine if photovoltaic/thermal solar systems (PV/T-systems) is suitable for single family houses in Sweden and if it can be a more viable option than photovoltaic systems based on economical and energy performance aspects. The thesis also examines if the owner of a single family house with existing solar panels can benefit from installing an intercooler and a heat-exchanging system that could add the untapped heat of the panels to the house’s heating system. This would decrease the solar panel temperature, thus increasing their efficiency and electricity production. It also examines the possibility of PV/T-systems playing a role in fulfilling the increased energy performance regulations placed upon contractors today, by reducing the primary energy number (primärenergitalet). To achieve these objectives the heat demand of a typical house in Sweden was simulated in VIP Energy based on a real house in Gothenburg which has a photovoltaic system. A modell for electricity production of a solar cell which included the temperature dependency was created in Matlab and a modell of a PV/T-system was created in Simulink. From these models and real data from the existing house and energy system, total production of heat and electricity was acquired. The results showed that the intercooler can enhance the solar cell performance but a life cycle cost analysis found that it was not a neconomically viable option due to its excess cost. It also showed that the PV/T system can be a suitable choice for single family houses in Sweden under certain conditions, mainly depending on uncertain price points. It did enhance the total energy performance of the house in comparison to solar cells but was only economically viable (from a life cycle perspective and not initial cost) when the main heating system consists of an electric heater. Surprisingly, it was also found that smaller PV/T-systems of 5 square meters of module area can yield a better life cycle cost than solar cells, even when the main heating system is a heat pump. Lastly, it was found that a PV/T-system can act as a viable option when building real estate as a method of lowering the primary energy number, assuming a stable and economically competitive price point and that investing in large scale systems leads to a lower price per produced unit of energy and unit of area of modules.
8

LASER-TESTING RIG : Measurement System for evaluation of Shape of concentrating reflector for solar collector Absolicon X10

Gaynullin, Bakhram January 2009 (has links)
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
9

Βελτίωση της απόδοσης φωτοβολταϊκών σε κτιριακές εφαρμογές

Θέμελης, Παναγιώτης 23 October 2008 (has links)
Πειραματική προσομοίωση μιας εγκατάστασης φωτοβολταϊκών σε στέγη κτιρίου με έμφαση στα σχολικά κτίρια. Βελτίωση της ηλεκτρικής τους απόδοσης με την δημιουργία αεραγωγού για την ψύξη των συλλεκτών και προσθήκη ενδιάμεσου μεταλλικου φύλλου και πτερυγίων βάσης. Εκτίμηση του ηλεκτρικού κέρδους σε πιθανή εγκατάσταση σε σχολική στέγη. / Experimental simulation of PV collectors’ establishment on inclined roofs and application on school buildings (as a paradigm). Study for the improvement of the PV/T collectors’ electrical efficiency by the addition of an air duct with natural air flow. The air duct contains either an internal/interspace thin metal sheet or basal metal fins (metal fins on its base). Effort for the estimation of the electrical energy benefit/gain by such an establishment on a typical school building.
10

Design, implementation and evaluation of a directly water cooled photovoltaic- thermal system

Mtunzi, Busiso January 2013 (has links)
This research project was based on the Design, Implementation and Evaluation of a Photovoltaic Water heating system in South Africa, Eastern Cape Province. The purpose of the study was to design and investigate the scientific and economic contribution of direct water cooling on the photovoltaic module. The method involved performance comparison of two photovoltaic modules, one naturally cooled (M1) and the other, direct water cooled module (M2). Module M2 was used to produce warm water and electricity, hence, a hybrid system. The study focused on comparing the modules’ efficiency, power output and their performance. The temperatures attained by water through cooling the module were monitored as well as the electrical energy generated. A data logger and a low cost I/V characteristic system were used for data collection for a full year. The data were then used for performance analysis of the modules. The results of the study revealed that the directly water cooled module could operate at a higher electrical efficiency for 87% of the day and initially produced 3.63% more electrical energy each day. This was found to be true for the first three months after installation. In the remaining months to the end of the year M2 was found to have more losses as compared to M1 as evidenced by the modules’ performance ratios. The directly water cooled module also showed an energy saving efficiency of 61%. A solar utilization of 47.93% was found for M2 while 8.77% was found for M1. Economically, the project was found to be viable and the payback period of the directly cooled module (M2) system was found to be 9.8 years. Energy economics showed that the system was more sensitive to the price changes and to the energy output as compared to other inputs such as operation and maintenance and years of operation. A generation cost of R0.84/kWh from the system was found and when compared to the potential revenue of R1.18 per kWh, the system was found to enable households to make a profit of 40.5 %. Use of such a system was also found to be able to contribute 9.55% towards carbon emission reduction each year. From these results, it was concluded that a directly cooled photovoltaic/thermal heating (PV/T) system is possible and that it can be of much help in terms of warm water and electricity provision.

Page generated in 0.0398 seconds