• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 10
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantum transport in mesoscopic systems of Bi and other strongly spin-orbit coupled materials

Rudolph, Martin 03 May 2013 (has links)
Systems with strong spin-orbit coupling are of particular interest in solid state physics as an avenue for observing and manipulating spin physics using standard electrical techniques. This dissertation focuses on the characteristics of elemental bismuth (Bi), which exhibits some of the strongest intrinsic spin-orbit coupling of all elements, and InSb, which exhibits some of the strongest intrinsic spin-orbit coupling of all compound semiconductors. The experiments performed study the quantum transport signatures of nano- and micron-scale lithographically defined devices as well as spin-orbit coupled material/ferromagnet interfaces. All Bi structures are fabricated from Bi thin "films, and hence a detailed analysis of<br />the characteristics of Bi "film growth by thermal evaporation is provided. Morphologically and electrically high quality "films are grown using a two stage deposition procedure. The phase and spin coherence of Bi geometries constrained in one, two, and three dimensions are systematically studied by analysis of the weak antilocalization transport signature, a quantum interference phenomenon sensitive to spin-orbit coupling. The "findings indicate that the phase coherence scales proportionally to the limiting dimension of the structure for sizes less than 500 nm. Specifically, in Bi wires, the phase coherence length is approximately as long as the wire width. Dephasing due to quantum confinement e"ffects limit the phase coherence in small Bi structures, impairing the observation of controlled interference phenomena in nano-scale Bi rings. The spin coherence length is independent of dimensional constraint by the film thickness, but increases significantly as the lateral dimensions, such as wire width, are constrained. This is a consequence of the quantum transport contribution from the strongly spin-orbit coupled Bi(001) surface state. To probe the Bi surface state further, Bi/CoFe junctions are fabricated. The anisotropic magnetoresistance of the CoFe is modifi"ed when carriers tunnel into the CoFe from Bi, possibly due to a spin dependent tunneling process or an interaction between the spin polarized density of states in CoFe and the anisotropic spin-orbit coupled density of states in Bi. InSb/CoFe junctions are studied as InSb "films are a simpler spin-orbit coupled system compared to Bi "films. For temperatures below 3.5 K, a large, symmetric, and abrupt negative magnetoresistance is observed. The low-"field high resistance state has similar temperature and magnetic "field dependences as the superconducting phase, but a superconducting component in the device measurements seems absent. A differential conductance measurement of the InSb/CoFe interface during spin injection indicates a quasiparticle gap present at the Fermi energy, coinciding with the large magnetoresistance. / Ph. D.
12

TOWARDS CATALYTIC OXIDATIVE DEPOLYMERIZATION OF LIGNIN

Mobley, Justin K. 01 January 2016 (has links)
Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, typical product yields are low and the highly corrosive reaction medium results in added expense. More recently, catalytic oxidations have been studied as a viable means to lignin utilization. The present work will review the state-of-the-art of lignin oxidations, and focus on stoichiometric and catalytic attempts to oxidize lignin and lignin model compounds in order achieve selective stepwise depolymerization of lignin. Specifically, activated dimethyl sulfoxides and LDH catalysts were evaluated for lignin and/or lignin model compound oxidations leading, in some cases, to unexpected products.
13

Nuclear Magnetic Resonance with the Distant Dipolar Field

Corum, Curtis A. January 2005 (has links)
Distant dipolar field (DDF)-based nuclear magnetic resonance is an active research area with many fundamental properties still not well understood. Already several intriguing applications have developed, like HOMOGENIZED and IDEAL spectroscopy, that allow high resolution spectra to be obtained in inhomogeneous fields, such as in-vivo. The theoretical and experimental research in this thesis concentrates on the fundamental signal properties of DDF-based sequences in the presence of relaxation (T1 and T2) and diffusion. A general introduction to magnetic resonance phenomenon is followed by a more in depth introduction to the DDF and its effects. A novel analytical signal equation has been developed to describe the effects of T2 relaxation and diffusing spatially modulated longitudinal spins during the signal build period of an HOMOGENIZED cross peak. Diffusion of the longitudinal spins results in a lengthening of the effective dipolar demagnetization time, delaying the re-phasing of coupled anti-phase states in the quantum picture. In the classical picture the unwinding rate of spatially twisted magnetization is no longer constant, but decays exponentially with time. The expression is experimentally verified for the HOMOGENIZED spectrum of 100mM TSP in H2O at 4.7T. Equations have also been developed for the case of multiple repetition steady state 1d and 2d spectroscopic sequences with incomplete magnetization recovery, leading to spatially varying longitudinal magnetization. Experimental verification has been accomplished by imaging the profile. The equations should be found generally applicable for those interested in DDF-based spectroscopy and imaging.
14

Correlações quânticas de caráter geral em sistemas de ressonância magnética nuclear / General quantum correlations in nuclear magnetic resonance systems

Silva, Isabela Almeida 10 August 2017 (has links)
A existência de Correlações Quânticas de Caráter Geral (CQCGs) - discórdia e coerência quântica, baseadas em argumentos entrópicos e geométricos, tem sido extensamente investigada e caracterizada nas últimas décadas. Estudar o efeito dinâmico da decoerência sobre estas medidas é um ponto chave em teoria de informação quântica, já que fenômenos de mudança súbita (sudden-change) e congelamento (freezing) na dinâmica das CQCGs podem ser úteis na exploração destes recursos. Do ponto de vista experimental, spins nucleares se apresentam como excelentes candidatos para testar fenômenos relacionados às CQCGs, tendo em vista a sua fácil manipulação através do método de Ressonância Magnética Nuclear (RMN). Além disso, neste contexto, os spin nucleares estão naturalmente sujeitos a ambientes bem caracterizados pelos canais de atenuação de fase (PD) e atenuação de amplitude generalizada (GAD). A proposta deste trabalho consiste em, a partir de uma revisão teórica dos desenvolvimentos na área de caracterização da decoerência das CQCGs, fornecer provas experimentais destas previsões empregando-se o método de RMN. O foco do trabalho se baseia em estados Bell diagonais (sistemas de 2 q-bits), ou, para casos mais gerais, em estados MN3 . Primeiramente, investigamos o fenômeno de duplo sudden-change em dois sistemas distintos de 2 q-bits, mas cada um sujeito ao efeito de um dos canais de atenuação: PD ou GAD. Estes sistemas permitiram a observação do aparecimento da base ponteiro quando o canal PD atua sobre o sistema. Em segundo lugar, as condições para o aparecimento do fenômeno de freezing são investigadas para sistemas contendo 2, 3 e 4 q-bits, todos associados à spins nucleares distintos e sujeitos a canais de PD independentes. O fenômeno de freezing foi observado nos casos de sistemas com número par de q-bits. Para medidas de dicórdia quântica, o freezing permanece constante por um período de tempo determinado pelas características do estado inicial, já para medidas de coerência, o freezing se mantém por tempo indeterminado. Todos estes resultados estão de acordo com as previsões teóricas encontradas na literatura. Com o objetivo de generalizar estes resultados, demonstramos ainda que estados Bell diagonais fornecem um limite inferior para a coerência presente em estados mais gerais. / Recently, the different formulations of General Quantum Correlations (GQCs) - quantum discord and quantum coherence, based on entropic and geometric arguments, have been extensively investigated and characterized. Following their behavior under decoherence is one of the remarkable points in quantum information theory, as the presence of surprisingly phenomena like sudden-change and freezing can be useful to exploit those resources. From the experimental side, nuclear spins appear as excellent candidates to test benching GQCs related phenomena, since they are easily manipulated by the Nuclear Magnetic Resonance (NMR) method and, in this context, are naturally subject to well characterized environments equivalent to Phase Damping (PD) and Generalized Amplitude Damping (GAD) Channels. Our proposal here is, after an overview of theoretical developments in GQCs decoherence characterization, provide experimental proofs through NMR. All the characterization is made for Bell diagonal states (2 qubit systems), or, in more general cases, for MN3 states. First of all, the double sudden-change phenomenon is investigated in two different 2 qubit systems, each one affected by PD and GAD separately. This allowed the observation of the pointer basis emergence in the PD case, as theoretically predicted. Second, the freezing phenomenon appearence conditions are investigated in 2, 3 and 4 qubit systems, where heteronuclear molecules were employed as setup and independent PD channels act on. The freezing phenomenon is experimentally observed in systems with an even number of qubits. For discord-like measures, the freezing remains constant an amount of time determined by the initial state, however in the coherence-like case it endures forever. All those results agree with the theoretical predictions. To generalize those results, it was also proved that Bell diagonal states provide a lower bond of coherence to general states that are characterized for the same correlation triple.
15

Aspects of quantum coherence

Aragón, David January 2006 (has links)
In this work our aim is to study several aspects related to quantum coherence as understood to correspond with the non-classical behaviour that can be observed for certain particular states of a physical system. In particular we are interested in the possible mechanisms that result in dynamically induced transitions between quantum and classical regimes. The thesis is organized as follows: The first chapter dubs as an introduction and serves to set out the basic philosophy underlying the questions addressed in this thesis. It also presents some elementary properties of states and state spaces in Quantum Theory including what we have chosen to define as classical and quantum behaviour. In chapter 2 we study some of the aspects related to observing quantum behaviour and of the properties of our main definition of classicality (and quantumness). Here we also study some of the restrictions imposed on measurements by the existence of globally conserved quantities (Wigner-Araki-Yanase theorem) and their relationship to weak measurements coupled to postselection. In the following chapter we review some of the basic tools used in the description of open quantum system dynamics that will be applied in other chapters. In chapter 4 we review the basics of decoherence and analyse the importance of the choice of initial conditions when trying to study the dynamical emergence of classical behaviour within Quantum Theory. Next we study the other direction of the transition and focus on how to obtain pure quantum states from states that originally were classically mixed. Along the same lines, in chapter 6 we cover some topics related to the production of pure quantum states from measurements. We pay special attention to a model of the non-selective continuous monitoring of a system coupled to another unmonitored system. Lastly we explore some of the possible similarities between the theory of phase transitions and the quantum-classical transition. We must emphasize that all the work done in this thesis assumes that Quantum Theory is generally valid (at least within a broad enough range of energies). Thus, when we say that a state is "classical" we will mainly be referring to one of all the possible states contained in Quantum Theory, but that is susceptible to being interpreted as corresponding to "classical" behaviour. Similarly when we speak of creating a "quantum", or "quantum coherent", state we mean that the system has evolved to this state from one of the "classical" ones, but all of these still correspond to valid states within Quantum Theory. In the opinion of the author the main original contributions that can be found in this thesis are the following: - The recognition of the relationship between the Wigner-Araki-Yanase theorem and weak measurements coupled to postselection (sections 2.2 and 2.4); - A mathematical proof of the possible ambiguities arising when two observers try to decide if a state corresponds to quantum or classical behaviour (section 2.6); - The implications of initial correlations in decoherence models. In particular how the choice of certain (correlated) initial conditions can result in residual coherence and the production of pure quantum states in a model that otherwise results in ideal decoherence when (locally equivalent) uncorrelated initial conditions are used (section 4.2); - Various results related to the production of quantum states from initially classical states (sections 5.2 to 5.4); - The analysis of the inverse of a generalized depolarizing channel (section 5.7); - The study of a model of the non-selective continuous monitoring, in the quantum Zeno limit, of a subsystem A interacting with an unmonitored subsystem B. In particular the absence of the purification of B, which has been previously predicted in the selective case, but the possibility of coherent dynamics for B (section 6.4); - The identification of the loose equivalent of a broken symmetry and order parameter in the quantum-classical transition (section 7.2).
16

Extending Coherent Effects from Atomic and Molecular Media to Plasmas and Nanostructures

Sun, Dong 2011 December 1900 (has links)
Quantum coherence and interference(QCI) effects have been studied for decades and are widely exploited in many areas. For media with QCI effect, the optical properties can change drastically, which leads to many interesting effects, such as coherent population trapping, electromagnetically induced transparency(EIT), lasing without population inversion(LWI) and so on. We have theoretically studied the pulsed regime of EIT. In particular, simulations of propagation of gaussian and 0 - pi co-propagating laser pulses in a medium consisting of 3-level Lambda-atoms have been performed. It has been found that, even at the two-photon resonance, the length of propagation for the 0 - pi pulses is much smaller than that for the Gaussian probe pulses. We explained such a behavior using the dark and bright basis and the dressed state basis. Some possible applications are discussed. We also investigated the collision-induced coherence of two decay channels along two optical transitions. Quantum interference will suppress the spontaneous emission. The degree of this suppression is measured by the branch ratio of these two transitions. Our preliminary calculations show that a significant decrease of the branching ratio with increase of electron densities is reproduced in the theory. We have developed a new variant of Raman spectroscopy with shaped femtosecond pulses. It has several advantages to be applied in multiscatterd media. It is based on change of the spectra of femtopulses due to Raman scattering (stimulated or coherent). The technique can be used for a broad range of applications from atomic and molecular optical and IR spectroscopy to spore detection and tissue microscopy. Finally, we have shown that Fano interference in the decay channels of three levels system can lead to considerably different absorption and emission profiles. We found that a coherence can be built up in the ground state doublet whose strength depends on a coupling parameter that arises from Fano interference. This can in principle lead to breaking of the detail balance between the absorption and emission processes in atomic systems.
17

Solid-State NMR Studies of Solvent-Accessible Fragments of a Seven-Helical Transmembrane Protein Proteorhodopsin

Ward, Meaghan 12 September 2011 (has links)
High–resolution multidimensional proton-detected NMR was used to study the solvent-exposed regions of a seven-helical integral membrane proton pump proteorhodopsin (PR). Fully deuterated PR samples with protons reintroduced to solvent-accessible sites through back exchange were prepared and found to produce NMR spectra with acceptable proton resolution (~0.2 ppm). Novel three-dimensional proton-detected chemical shift correlation spectroscopy was used for the identification and resonance assignment of the solvent–exposed regions of PR. Though most of the observed residues were located at the membrane interface there were notable exceptions, particularly in helix G. This helix contains the Schiff base-forming Lys231 and many conserved polar residues in the extracellular half. Solvent accessibility of helix G supports the hypothesis that high mobility of the F-G loop could transiently expose a hydrophilic cavity in the extracellular half of PR, and implies that such a cavity may be part of the protein’s proton-conduction pathway. / Natural Sciences and Engineering Research Council, Ontario Ministry of Training, Colleges, and Universities, Canadian Foundation for Innovation, Ontario Ministry of Research and Innovation, University of Guelph
18

Correlações quânticas de caráter geral em sistemas de ressonância magnética nuclear / General quantum correlations in nuclear magnetic resonance systems

Isabela Almeida Silva 10 August 2017 (has links)
A existência de Correlações Quânticas de Caráter Geral (CQCGs) - discórdia e coerência quântica, baseadas em argumentos entrópicos e geométricos, tem sido extensamente investigada e caracterizada nas últimas décadas. Estudar o efeito dinâmico da decoerência sobre estas medidas é um ponto chave em teoria de informação quântica, já que fenômenos de mudança súbita (sudden-change) e congelamento (freezing) na dinâmica das CQCGs podem ser úteis na exploração destes recursos. Do ponto de vista experimental, spins nucleares se apresentam como excelentes candidatos para testar fenômenos relacionados às CQCGs, tendo em vista a sua fácil manipulação através do método de Ressonância Magnética Nuclear (RMN). Além disso, neste contexto, os spin nucleares estão naturalmente sujeitos a ambientes bem caracterizados pelos canais de atenuação de fase (PD) e atenuação de amplitude generalizada (GAD). A proposta deste trabalho consiste em, a partir de uma revisão teórica dos desenvolvimentos na área de caracterização da decoerência das CQCGs, fornecer provas experimentais destas previsões empregando-se o método de RMN. O foco do trabalho se baseia em estados Bell diagonais (sistemas de 2 q-bits), ou, para casos mais gerais, em estados MN3 . Primeiramente, investigamos o fenômeno de duplo sudden-change em dois sistemas distintos de 2 q-bits, mas cada um sujeito ao efeito de um dos canais de atenuação: PD ou GAD. Estes sistemas permitiram a observação do aparecimento da base ponteiro quando o canal PD atua sobre o sistema. Em segundo lugar, as condições para o aparecimento do fenômeno de freezing são investigadas para sistemas contendo 2, 3 e 4 q-bits, todos associados à spins nucleares distintos e sujeitos a canais de PD independentes. O fenômeno de freezing foi observado nos casos de sistemas com número par de q-bits. Para medidas de dicórdia quântica, o freezing permanece constante por um período de tempo determinado pelas características do estado inicial, já para medidas de coerência, o freezing se mantém por tempo indeterminado. Todos estes resultados estão de acordo com as previsões teóricas encontradas na literatura. Com o objetivo de generalizar estes resultados, demonstramos ainda que estados Bell diagonais fornecem um limite inferior para a coerência presente em estados mais gerais. / Recently, the different formulations of General Quantum Correlations (GQCs) - quantum discord and quantum coherence, based on entropic and geometric arguments, have been extensively investigated and characterized. Following their behavior under decoherence is one of the remarkable points in quantum information theory, as the presence of surprisingly phenomena like sudden-change and freezing can be useful to exploit those resources. From the experimental side, nuclear spins appear as excellent candidates to test benching GQCs related phenomena, since they are easily manipulated by the Nuclear Magnetic Resonance (NMR) method and, in this context, are naturally subject to well characterized environments equivalent to Phase Damping (PD) and Generalized Amplitude Damping (GAD) Channels. Our proposal here is, after an overview of theoretical developments in GQCs decoherence characterization, provide experimental proofs through NMR. All the characterization is made for Bell diagonal states (2 qubit systems), or, in more general cases, for MN3 states. First of all, the double sudden-change phenomenon is investigated in two different 2 qubit systems, each one affected by PD and GAD separately. This allowed the observation of the pointer basis emergence in the PD case, as theoretically predicted. Second, the freezing phenomenon appearence conditions are investigated in 2, 3 and 4 qubit systems, where heteronuclear molecules were employed as setup and independent PD channels act on. The freezing phenomenon is experimentally observed in systems with an even number of qubits. For discord-like measures, the freezing remains constant an amount of time determined by the initial state, however in the coherence-like case it endures forever. All those results agree with the theoretical predictions. To generalize those results, it was also proved that Bell diagonal states provide a lower bond of coherence to general states that are characterized for the same correlation triple.
19

Optique quantique électronique / Electronic quantum optics

Grenier, Charles 30 June 2011 (has links)
Les progrès des techniques de nanofabrication des dix dernières années ont permis la mise en place de protocoles visant à manipuler les charges uniques dans les nanostructures. Ces nouvelles techniques permettent d'envisager la réalisation d'expériences d'optique quantique avec des électrons. Cette thèse s'inscrit dans ce contexte. Le but de ce travail a été la construction d'un formalisme adapté à la description de telles expériences. Ce formalisme, construit en analogie avec la théorie de la cohérence quantique du champ électromagnétique de Glauber, souligne les similitudes et différences entre les photons se propageant dans le vide, et le transport électronique dans des conducteurs balistiques unidimensionnels. En particulier, il rend compte de la décohérence et de la relaxation en énergie des excitations électroniques en présence d'interactions. Un autre aspect de cette thèse a été la proposition de protocoles permettant de mesurer des quantités directement reliées aux propriétés de cohérence décrites par le formalisme de l'optique quantique électronique. En particulier, un protocole de tomographie quantique reposant sur l'effet Hanbury Brown et Twiss a été proposé pour reconstruire la cohérence à un corps d'une source monoélectronique. Ce protocole peut aussi être envisagé pour obtenir des informations sur les mécanismes de décohérence. / The last ten years saw tremendous progress in nanofabrication techniques. These progresses allowed the realization of experimental protocols aiming at the manipulation of single electrons in nanostructures. Thus, the advent of these technologies permit to envision the realization of electronic analogues of quantum optics experiments. This thesis is devoted to the theoretical study of quantum optics with electrons propagating in quantum Hall edge channels, in analogy with Glauber's theory for the quantum coherence of the electromagnetic field. The proposed formalism underlines the analogies and differences between photons propagating in the vacuum and electrons in ballistic conductors. In particular, it takes into account the decoherence and relaxation of electronic excitations under the influence of a linear electromagnetic environment. All along this thesis, efforts have been made to propose protocols aiming at accessing experimental quantities related to the coherence properties described by the electron quantum optics formalism. A particular example is a single electron quantum tomography protocol which reconstructs the single particle coherence from current noise measurements. This protocol can also be envisioned to probe decoherence mechanisms.
20

On-Chip Atomic Spectroscopy

Conkey, Donald B. 16 March 2007 (has links) (PDF)
This thesis presents the integration of atomic vapor cells with anti-resonant reflecting optical waveguides (ARROWs) fabricated on silicon chips. These potentially provide a compact platform for a number of optical applications, including the study of quantum coherence effects such as electromagnetically induced transparency and single-photon nonlinearities, as well as frequency stabilization standards. The use of hollow waveguides allows for light propagation in low index (vapor) media with compact mode areas. ARROWs make particularly attractive waveguides for this purpose because they can be interfaced with solid core waveguides, microfabricated on a planar substrate, and are effectively single mode. ARROW fabrication utilizes an acid-removed sacrificial core surrounded by alternating plasma deposited dielectric layers, which act as Fabry-Perot reflectors. To demonstrate the effectiveness of the ARROW as a vapor cell, a platform consisting of solid and hollow core waveguides integrated with rubidium vapor cells was developed. A variety of sealing techniques were tested for vapor cell integration with the ARROW chip and for compatibility with rubidium. Rubidium was used because it is of particular interest for studying quantum coherence effects. Liquefied rubidium was transferred from a bulk supply into an on-chip vapor cell in an anaerobic atmosphere glovebox. Optical absorption measurements confirmed the presence of rubidium vapor within the hollow waveguide platform. Further analysis of the measurements revealed high optical density of rubidium atoms in the hollow core. Saturated absorption spectroscopy measurements verified that the on-chip integrated vapor cell was suitable for common precision spectroscopy applications.

Page generated in 0.1036 seconds