• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 15
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 50
  • 42
  • 39
  • 20
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Quantização canônica e integração funcional no modelo esférico médio / Canonical quantization and functional integration in the mean spherical mode

Paula Fernanda Bienzobaz 16 April 2012 (has links)
O modelo esférico desempenha um papel importante na mecânica estatística, pois ele permite a realização de cálculos exatos para estudar o comportamento crítico. Diferentes soluções do modelo esférico têm sido usadas para estudar o comportamento crítico de uma grande variedade de sistemas (com diversos tipos de desordem, com interações competitivas, de curto e de longo alcance, ferro e antiferromagnéticas, além de muitas outras situações). As soluções desses modelos apresentam uma série de anomalias a baixas temperaturas, inclusive resultados que contradizem a terceira lei da termodinâmica. Na década de 70, foi sugerido que esse comportamento anômalo a temperaturas muito baixas seria corrigido pela introdução de flutuações quânticas, que não eram levadas em conta nas soluções clássicas. De fato, a partir da quantização do modelo esférico e possível corrigir esse comportamento. Utilizamos então dois métodos distintos de quantização - quantização canônica e representação em termos de integrais funcionais - para construir versões quânticas do modelo esférico clássico, que podem ser investigadas analiticamente. Mostramos que essas formulações quânticas conduzem aos mesmos resultados. Em particular, analisamos as propriedades termodinâmicas de um modelo esférico médio\" quântico nas seguintes situações: (i) com inteirações de longo alcance, do tipo campo médio, que deve constituir um dos sistemas mais simples exibindo uma transição de fase quântica; (ii) com interações competitivas, entre primeiros e segundos vizinhos, numa situação em que ocorre um ponto multicrítico de Lifshitz; (iii) na presença de interações de longo alcance, tipo campo médio, e de um campo aleatório com média nula; (iv) na presença de desordem de sítios, como nos modelos de van Hemmen para um vidro de spin ou de Hopfield para uma rede neural com poucos padrões. Em todos esses casos há correção do comportamento anômalo a baixas temperaturas. Obtemos diagramas de fases e estudamos em cada caso a natureza das fases ordenadas. / The spherical model plays an important role in statistical mechanics, since it is amenable to exact calculations to investigate the critical behavior. Solutions of the spherical model have been used to investigate the critical behavior of a large variety os systems (with different types of disorder, with competing interactions, of short and long range, of ferro and antiferromagnetic nature, and many other situations). Solutions of these model systems display a number of anomalies at low temperatures, which include some violations of the third law of thermodynamics. In the seventies, it has been suggested that this anomalous behavior at very low temperatures would be corrected by the introduction of quantum uctuations, which were not taken into account by the classical solutions. In fact, the quantization of the spherical model leads to the correction of these effects. We then use two different methods of quantization, canonical quantization and representation in terms of functional integrals, which are still amenable to exact analytical calculations. We show that these quantum formulations lead to the same results. In particular, we analyze the thermodynamic properties of a quantum \\mean spherical model\" in the following situations: (i) with long-range, mean-field, interactions, which is perhaps the simplest model system that exhibits a quantum phase transition; (ii) with competing interactions between first and second neighbors, in which case there should be a Lifshitz multicritical point; (iii) in the presence of long-range interactions and of a random field of zero mean value; (iv) in the presence of disorder, such as the van Hemmen model for a spin glass or the Hopfield model for a neural network with just a few patterns. In all of these cases the anomalous behavior is corrected at low temperatures. We obtain a number of phase diagrams, and discuss the nature of the ordered phases.
22

Transição de fase quântica de sistema 2D em rede de vórtices / Quantum phase transition of 2D system in a vortex lattice

Jhonny Richard Huamani Chaviguri 20 July 2016 (has links)
Neste trabalho estudamos um sistema bidimensional composto de duas espécies atômicas condensadas, uma delas contendo uma rede de vórtices. Analogamente ao modelo desenvolvido para tratar de átomos ultrafrios em redes ópticas, mapeamos o Hamiltoniano do nosso sistema com o Hamiltoniano do modelo Bose-Hubbard (BH), com o potencial periódico da rede advindo da interação de campo médio entre as duas espécies. A variação do comprimento de espalhamento atômico permite alterar as propriedades do potencial confinante, com a indução da transição de fase quântica na espécie aprisionada nos vórtices. O novo aspecto trazido pela rede de vórtices advém dos seus modos de excitação de baixa energia, os modos de Tkachenko. Consideramos os efeitos da dinâmica própria desse potencial sobre a espécie aprisonada através de um modelo BH efetivo, com novos valores para interação local e tunelamento, além de um termo adicional de interação de longo alcance, mediada pelos modos da rede. Além de complementar os estudos com redes ópticas estáticas, a proposta teórica desenvolvida apresenta grande viabilidade experimental no contexto das técnicas atuais para manipulação de átomos ultrafrios. / In this work we consider a two dimensional system composed of two condensed atomic species, one containing a vortex lattice. Analogously to the model used to describe ultracold atoms in optical lattices, we mapped our system Hamiltonian in the Hamiltonian of the Bose-Hubbard (BH) model, with the periodic lattice potential arising from the meanfield interaction between the two species. The variation of the atomic scattering length allow us to change the properties of the confining potential, to induce the quantum phase transition in the species trapped in the vortices. The new aspect brought by the vortex lattice comes with its low energy normal modes, the Tkachenko modes. We considered the effects of such dynamic potential over the confined species thought an effective BH model, with new values for the local interaction and tunneling parameters, besides an additional long-range interaction term mediated by the lattice modes. Our theoretical proposal goes beyond the studies with static optical lattice. Additionally, it has great feasibility in the current context of ultra-cold atoms experimental techniques.
23

Quebra de simetria e transição de fase quântica em alguns modelos de acoplamento spin-boson / Symmetry breaking and quantum phase transition in spin-boson models

Chagas, Emiliano Augusto 14 January 2008 (has links)
Orientador: Kyoko Furuya / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T14:44:05Z (GMT). No. of bitstreams: 1 Chagas_EmilianoAugusto_M.pdf: 5122954 bytes, checksum: a280b293a78cd819e62e73692ae4b99f (MD5) Previous issue date: 2008 / Resumo: Neste trabalho estudamos o efeito sobre a Transição de Fase Quântica (TFQ) do Modelo de Dicke Integrável devido a adição de um pequeno termo (fixo) de interação de dois bósons na Aproximação de Onda Girante (RWA). Mostramos que, embora a descontinuidade na derivada da energia do Estado Fundamental (EF) como função do parâmetro principal de interação ('lambda') continue presente para qualquer valor de spin (J), o emaranhamento entre spin e boson sofre uma mudança bastante significativa devido à perturbação, especialmente no limite de grandes valores de J (N = 2J >> 1). Este comportamento novo é entendido através do estudo conjunto de duas quantidades como função de 'lambda' (interação) e J (tamanho do spin), a saber: (i) o ponto fixo e vizinhanças da dinâmica no espaço de fase de spin do análogo clássico do modelo e (ii) a Função de Wigner de spin EF do sistema nas vizinhanças do máximo / Abstract: In this work we study the effect on the Quantum Phase Transition (QPT) of the integrable version of the Dicke model when we add a small (fixed) two boson interaction in the Rotating Wave Approximation (RWA). We show that, although the discontinuity of the Ground State (GS) energy derivative as a function of the principal parameter of interaction ('lambda') remains present for any value of spin (J), the entanglement between the spin and boson undergoes a significant change due the perturbation, specially in the limit of large values of J (N = 2J >> 1). This new behavior has been understood through the combined study of two quantities as a function of 'lambda' (interaction) and J (size of the spin): (i) the fixed point and its vicinity in the dynamics of the spin phase space o the model¿s classical analogue, and (ii) the behavior of the maxima of the spin Wigner function and its vicinity for the GS of the system / Mestrado / Física / Mestre em Física
24

Contrôle de la supraconductivité à l'interface d'oxydes LaAlO3/SrTiO3 par effet de champ électrique / Field-effect control of superconductivity at LaAlO3/SrTiO3 oxides interface

Hurand, Simon 11 February 2015 (has links)
Cette thèse s'intéresse à l'étude de la supraconductivité bidimensionnelle à l'interface entre les oxydes LaAlO3 et SrTiO3 contrôlée par effet de champ électrique. Lorsqu'on fait croître une couche mince de quelques mailles atomiques de LaAlO3 sur un substrat de SrTiO3, l'interface devient conductrice, et même supraconductrice au-dessous de 300mK, bien que ces deux oxydes de structure pérovskite soient des isolants. Il se forme ainsi un gaz bidimensionnel d'électrons de haute mobilité, dont les propriétés - supraconductivité et fort couplage spin-orbite de type Rashba - peuvent être contrôlées par effet de champ électrique à l'aide d'une Back Gate. Nous avons étudié cette supraconductivité bidimensionnelle par trois approches expérimentales différentes : l'étude de la transition supraconductrice en température à l'aide du modèle de Berezinskii-Kosterlitz-Thouless incluant une distribution inhomogène de rigidité ; l'analyse par le groupe de renormalisation de la transition de phase quantique supraconducteur-isolant induite par un champ magnétique perpendiculaire à l'interface selon le modèle de Spivak, Oreto et Kivelson ; et enfin l'étude de l'hystérèse du courant critique ainsi que de sa nature probabiliste dans le cadre du modèle RCSJ. Nous proposons donc de considérer l'interface comme un réseau de flaques supraconductrices couplées par effet Josephson à travers un gaz 2D métallique, dont la transition est régie par le modèle XY des fluctuations de phase. Enfin, nous avons démontré pour la première fois la possibilité de contrôler les propriétés du gaz 2D à l'aide d'une Top Gate, et comparé les effets des deux grilles (Top ou Back Gate). / In this PhD work, we study the field-effect modulated two-dimensional superconductivity at the LaAlO3/SrTiO3 oxides hetero-interface. When one grows epitaxially a few unit cells thin film of LaAlO3 on a SrTiO3 substrate, the interface becomes conducting, and even superconducting below 300mK, although these two perovskite oxides are insulators. The properties of this high-mobility two-dimensional electron gas – superconductivity and strong Rashba-type spin-orbit coupling - can be field-effect modulated by the mean of a Back Gate. We have investigated this two-dimensional superconductivity through three different experimental approaches : the temperature-driven transition with the Berezinskii-Kosterlitz-Thouless model including an inhomogeneous distribution of rigidity ; the finite-size scaling analysis of the superconductor-to-insulator quantum phase transition induced by a perpendicular magnetic field using the model developed by Spivak, Oreto and Kivelson ; and finally the measure of the hysteretic and stochastic properties of the critical current in the framework of the RCSJ model. We hence propose to consider this 2D electron gas as an inhomogeneous network of superconducting puddles coupled to one another by Josephson effect through a normal metallic matrix, which transition is dominated by the XY model of the phase fluctuations. Finally, we demonstrated for the first time the possibility of Top Gated-control of this interface, and we investigated the compared effects of Top and Back Gating.
25

Quantum Fluctuations Across the Superconductor-Insulator Transition

Khan, Hasan 04 September 2019 (has links)
No description available.
26

NUMERICAL STUDIES OF FRUSTRATED QUANTUM PHASE TRANSITIONS IN TWO AND ONE DIMENSIONS

Thesberg, Mischa 11 1900 (has links)
This thesis, comprising three publications, explores the efficacy of novel generalization of the fidelity susceptibility and their numerical application to the study of frustrated quantum phase transitions in two and one dimensions. Specifically, they will be used in exact diagonalization studies of the various limiting cases of the anisotropic next-nearest neighbour triangular lattice Heisenberg model (ANNTLHM). These generalized susceptibilities are related to the order parameter susceptibilities and spin stiffness and are believed to exhibit similar behaviour although with greater sensitivity. This makes them ideal for numerical studies on small systems. Additionally, the utility of the excited-state fidelity and twist boundary conditions will be explored. All studies are done through numerical exact diagonalization. In the limit of interchain couplings going to zero the ANNTLHM reduces to the well studied $J_1-J_2$ chain with a known, difficult to identify, BKT-type transition. In the first publication of this work the generalized fidelity susceptibilities introduced therein are shown to be able to identify this transition as well as characterize the already understood phases it straddles. The second publication of this work then seeks to apply these generalized fidelity susceptibilities, as well as the excited-state fidelity, to the study of the general phase diagram of the ANNTLHM. It is shown that the regular and excited-state fidelities are useful quantities for the mapping of novel phase diagrams and that the generalized fidelity susceptibilities can provide valuable information as to the nature of the phases within the mapped phase regions. The final paper sees the application of twisted boundary conditions to the anisotropic triangular model (next-nearest neighbour interactions are zero). It is demonstrated that these boundary conditions greatly enhance the ability to numerically explore incommensurate physics in small systems. / Thesis / Doctor of Science (PhD)
27

Superconductivity, Magnetism, Quantum Criticality, and Hidden Order in Quantum Materials

Kunwar, Dom Lal 05 July 2022 (has links)
No description available.
28

Dynamic Fidelity Susceptibility and its Applications to Out-of-Equilibrium Dynamics in Driven Quantum Systems

Richards, Matt January 2019 (has links)
In this thesis we introduce a new quantity which we call the dynamic fidelity susceptibility (DFS). We show that it is relevant to out-of-equilibrium dynamics in many-particle quantum systems, taking the problem of an impurity in a Bosonic Josephson junction, and the transverse field Ising model, as examples. Both of these systems feature quantum phase transitions in their ground states and understanding the dynamics near such critical points is currently an active area of research. In particular, sweeping a system through a quantum critical point at finite speed leads to non-adiabatic dynamics. A simple theoretical tool for describing such a scenario is the celebrated Kibble-Zurek theory which predicts that the number of excitations is related to the speed of sweep via the phase transition’s critical exponents at equilibrium. Another theoretical tool, useful in describing the static properties of quantum phase transitions, is the fidelity susceptibility. Our DFS generalizes the concept of fidelity susceptibility to nonequilibrium dynamics, reproducing its results in the static limit, whilst also displaying universal scaling properties, akin to those found in Kibble-Zurek theory, in the non-adiabatic regime. Furthermore, we show that the DFS is the same quantity as the time-dependent quantum Fisher information which provides a measure of multi-partite entanglement, as well as being closely related to out-of-time-order correlators (OTOCs). / Thesis / Master of Science (MSc)
29

Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets

Joshi, Darshan Gajanan 02 March 2016 (has links) (PDF)
In the study of strongly interacting condensed-matter systems controlled microscopic theories hold a key position. Spin-wave theory, large-N expansion, and $epsilon$-expansion are some of the few successful cornerstones. In this doctoral thesis work, we have developed a novel large-$d$ expansion method, $d$ being the spatial dimension, to study model Hamiltonians hosting a quantum phase transition between a paramagnet and a magnetically ordered phase. A highlight of this technique is that it can consistently describe the entire phase diagram of the above mentioned models, including the quantum critical point. Note that most analytical techniques either efficiently describe only one of the phases or suffer from divergences near the critical point. The idea of large-$d$ formalism is that in this limit, non-local fluctuations become unimportant and that a suitable product state delivers exact expectation values for local observables, with corrections being suppressed in powers of $1/d$. It turns out that, due to momentum summation properties of the interaction structure factor, all diagrams are suppressed in powers of $1/d$ leading to an analytic expansion. We have demonstrated this method in two important systems namely, the coupled-dimer magnets and the transverse-field Ising model. Coupled-dimer magnets are Heisenberg spin systems with two spins, coupled by intra-dimer antiferromagnetic interaction, per crystallographic unit cell (dimer). In turn, spins from neighboring dimers interact via some inter-dimer interaction. A quantum paramagnet is realized for a dominant intra-dimer interaction, while a magnetically ordered phase exists for a dominant (or of the same order as intra-dimer interaction) inter-dimer interaction. These two phases are connected by a quantum phase transition, which is in the Heisenberg O(3) universality class. Microscopic analytical theories to study such systems have been restricted to either only one of the phases or involve uncontrolled approximations. Using a non-linear bond-operator theory for spins with S=$1/2$, we have calculated the $1/d$ expansion of static and dynamic observables for coupled dimers on a hypercubic lattice at zero temperature. Analyticity of the $1/d$ expansion, even at the critical point, is ensured by correctly identifying suitable observables using the mean-field critical exponents. This method yields gapless excitation modes in the continuous symmetry broken phase, as required by Goldstone\'s theorem. In appropriate limits, our results match with perturbation expansion in small ratio of inter-dimer and intra-dimer coupling, performed using continuous unitary transformations, as well as the spin-wave theory for spin-$1/2$ in arbitrary dimensions. We also discuss the Brueckner approach, which relies on small quasiparticle density, and derive the same $1/d$ expansion for the dispersion relation in the disordered phase. Another success of our work is in describing the amplitude (Higgs) mode in coupled-dimer magnets. Our novel method establishes the popular bond-operator theory as a controlled approach. In $d=2$, the results from our calculations are in qualitative agreement with the quantum Monte Carlo study of the square-lattice bilayer Heisenberg AF spin-$1/2$ model. In particular, our results are useful to identify the amplitude (Higgs) mode in the QMC data. The ideas of large-$d$ are also successfully applied to the transverse-field Ising model on a hypercubic lattice. Similar to bond operators, we have introduced auxiliary Bosonsic operators to set up our method in this case. We have also discussed briefly the bilayer Kitaev model, constructed by antiferromagnetically coupling two layers of the Kitaev model on a honeycomb lattice. In this case, we investigate the dimer quantum paramagnetic phase, realized in the strong inter-layer coupling limit. Using bond-operator theory, we calculate the mode dispersion in this phase, within the harmonic approximation. We also conjecture a zero-temperature phase diagram for this model.
30

Zigzag Phase Transition in Quantum Wires and Localization in the Inhomogeneous One-Dimensional Electron Gas

Mehta, Abhijit C. January 2013 (has links)
<p>In this work, we study two important themes in the physics of the interacting one-dimensional (1D) electron gas: the transition from one-dimensional to higher dimensional behavior, and the role of inhomogeneity. The interplay between interactions, reduced dimensionality, and inhomogeneity drives a rich variety of phenomena in mesoscopic physics. In 1D, interactions fundamentally alter the nature of the electron gas, and the homogeneous 1D electron gas is described by Luttinger Liquid theory. We use Quantum Monte Carlo methods to study two situations that are beyond Luttinger Liquid theory --- the quantum phase transition from a linear 1D electron system to a quasi-1D zigzag arrangement, and electron localization in quantum point contacts. </p><p>Since the interacting electron gas has fundamentally different behavior in one dimension than in higher dimensions, the transition from 1D to higher dimensional behavior is of both practical and theoretical interest. We study the first stage in such a transition; the quantum phase transition from a 1D linear arrangement of electrons in a quantum wire to a quasi-1D zigzag configuration, and then to a liquid-like phase at higher densities. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal; then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag phase; and, finally, the electrons form a disordered liquid-like phase. We show that the linear to zigzag phase transition occurs even in narrow wires with strong quantum fluctuations, and that it has characteristics which are qualitatively different from the classical transition.</p><p>Experiments in quantum point contacts (QPC's) show an unexplained feature in the conductance known as the ``0.7 Effect''. The presence of the 0.7 effect is an indication of the rich physics present in inhomogeneous systems, and we study electron localization in quantum point contacts to evaluate several different proposed mechanisms for the 0.7 effect. We show that electrons form a Wigner crystal in a 1D constriction; for sharp constriction potentials the localized electrons are separated from the leads by a gap in the density, while for smoother potentials, the Wigner crystal is smoothly connected to the leads. Isolated bound states can also form in smooth constrictions if they are sufficiently long. We thus show that localization can occur in QPC's for a variety of potential shapes and at a variety of electron densities. These results are consistent with the idea that the 0.7 effect and bound states observed in quantum point contacts are two distinct phenomena.</p> / Dissertation

Page generated in 0.0581 seconds