• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 43
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Neural Network Based Off-line Handwritten Text Recognition System

Han, Changan 01 April 2011 (has links)
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: 1) error rate on testing set, 2) processing time needed to recognize a segmented character and 3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
62

Theoretical Prediction of Electronically Excited States and Vibrational Frequencies of Interstellar and Planetary Radicals, Anions, and Cations

Fortenberry, Ryan Clifton 11 April 2012 (has links)
In the search for molecular species in the interstellar medium and extraterrestrial planetary atmospheres, theoretical methods continue to be an invaluable tool to astronomically minded chemists. Using state-of-the art methods, this doctoral work characterizes the electronically excited states of interstellar radicals, cations, and even rare anions and also predicts the gas phase fundamental vibrational frequencies of the cis and trans-HOCO radicals, as well as the cis-HOCO anion. First, open-shell coupled cluster methods of singles and doubles (CCSD) and singles and doubles with triples-inclusion (CC3) are tested on the C₂H and C₄H radicals. The significant double-excitation character, as well as the quartet multiplicity of some states yields inaccurate excitation energies and large spin contamination with CCSD. CC3 somewhat improves this for select states, but discrepancies between CC and multireference results for certain states exist and likely arise from the lack of spin adaptation in conventional spin-orbital CC. Next, coupled-cluster methods predict the presence of an excited state of the closed-shell allyl cation and its related H₂CCCHCH₂⁺ cousin at 443 nm near an unidentified laboratory peak at 442.9 nm which is also close to one of the largest unattributed interstellar absorption features. Additionally, the dipole moments, electron binding energies, and excited states of neutral radicals and corresponding closed-shell anions of interstellar interest are also computed. These are calibrated against experimental data for CH₂CN⁻ and CH₂CHO⁻. Since coupled cluster theory closely reproduces the known experimental data, dipole-bound excited states for eight previously unknown anions are predicted: CH2SiN⁻ , SiH₂CN⁻, CH₂SiHO⁻, SiN⁻, CCOH⁻, HCCO⁻, SiCCN⁻, and SiNC⁻. In addition, we predict the existence of one rare valence-bound excited state of CH₂SiN⁻ and also SiCCN⁻ as well as even rarer two valence-bound states of CCSiN⁻. Lastly, the reaction of CO + OH and its transient potential intermediate, the HOCO radical, may be responsible for the regeneration of CO₂ in the Martian atmosphere, but past spectroscopic observations have not produced a full gas-phase set of the fundamental vibrational frequencies of the HOCO radical. Using established, highly-accurate quantum chemical coupled cluster tech- niques and quartic force fields, all six fundamental vibrational frequencies for 1 ²A′ cis and trans-HOCO and 1 ¹A′ cis-HOCO⁻ are computed in the gas phase. / Ph. D.
63

Sobre o número máximo de retas duas a duas disjuntas em superfícies não singulares em P3

Lira, Dayane Santos de 24 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-22T13:57:08Z No. of bitstreams: 1 arquivototal.pdf: 1762696 bytes, checksum: 53bf47b7590ebc1271d2f0d81822f00c (MD5) / Made available in DSpace on 2017-08-22T13:57:08Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1762696 bytes, checksum: 53bf47b7590ebc1271d2f0d81822f00c (MD5) Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aims to determine the maximum number of pairwise disjoint lines that a non-singular surface of degree d in P3 can contain. In the case of degrees d = 1 and d = 2 we found that these values are zero and in nite, respectively. Furthermore, in the case of degree d = 3 we did show that the maximum number of pairwise disjoint lines is 6, these con gurations were studied in 1863 by the Swiss Ludwig Schl a i (1814-1895) in [15]. For the case d = 4, in 1975 the Russian Viacheslav Nikulin in [10] showed that non-singular quartic surfaces contain at most 16 pairwise disjoint lines. In our work, we have been able to show that Schur's famous quartic achieves this bound and that Fermat's quartic has at most 12 pairwise disjoint lines. We also determined lower bounds for the maximum number of pairwise disjoint lines in the case of non-singular surfaces of degree d 5. For example, the Rams's family in [11] allows us to nd one of these lower bounds. / Este trabalho objetiva determinar a quantidade máxima de retas duas a duas disjuntas que uma superfície não singular de grau d em P3 pode conter. No caso dos graus d = 1 e d = 2 verificamos que estes valores s~ao zero e in nito, respectivamente. Al em disso, no caso de grau d = 3 mostramos que o n umero m aximo de retas duas a duas disjuntas e 6, ditas con gura c~oes foram estudadas em 1863 pelo sui co Ludwig Schl a i (1814-1895) em [15]. Para o caso d = 4, em 1975 o russo Viacheslav Nikulin em [10] mostrou que as superf cies qu articas n~ao singulares cont^em no m aximo 16 retas duas a duas disjuntas. No nosso trabalho, conseguimos mostrar que a famosa qu artica de Schur atinge essa cota e que qu artica de Fermat possui no m aximo 12 retas duas a duas disjuntas. Determinamos ainda cotas inferiores para o n umero m aximo de retas duas a duas disjuntas no caso de superf cies n~ao singulares de grau d 5. Por exemplo, a fam lia de Rams em [11] nos permite achar uma dessas cotas inferiores.
64

Sobre o número máximo de retas em superfícies não singular de grau 4 em P3

Rêgo, Thiago Luiz de Oliveira do 14 September 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T13:08:07Z No. of bitstreams: 1 arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5) / Made available in DSpace on 2017-08-23T13:08:07Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5) Previous issue date: 2016-09-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In 1943 Beniamino Segrebelievedtohaveshownthatthemaximumnumberof lines containedinasmoothquarticsurfacein P3 is 64, ([16]).Butrecently,therewasa majoroverturnonthatthemewhenthemathematiciansRamsandSchuttfoundthat Segre hadmadeamistakeinhisworktoforgetthequartic'sfamily Z , ([14]),which essentiallycorrespondstothosequarticscontainingalinesthatcanbeincidenttomore than 18 lines containedinthesurface.Inthiswork,basedon([14]),weshowthatevery smoothquarticsurface,whichdoesnotbelongtofamily Z containsamaximumof 64 lines. Oneofthemostimportanttoolstoshowthisresult,isthestudyof_brations _l induced byaline l containedonthesurface,andtherelationshipbetweentheEuler characteristicofthebase(P1 in ourcase),the_bersandthesurfaceconcerned. / Em 1943,BeniaminoSegreacreditouterdemonstradoqueonúmeromáximo de retascontidasnumasuperfíciequárticanãosingularem P3 é 64; ([16]). Mas recentemente,houveumareviravoltanessetema,quandoosmatemáticosSªawomir Rams eMatthiasSchüttconstataramqueSegretinhacometidoumerroemseutrabalho ao esquecerasquárticasdafamília Z; ([14]), quecorrespondemessencialmenteas quárticas quepossuemretasquepodemserincidentesamaisde 18 retas contidas na superfície.Nestetrabalho,tendocomobase[14],mostramosquetodaquártica não singular,quenãopertenceafamília Z; contémnomáximo 64 retas. Umadas ferramentasmaisimportantes,paramostraresseresultado,éoestudodas_brações _l induzida porumareta l contidanasuperfície,earelaçãoqueexisteentrea característica deEulerdabase(emnossocaso P1), das_brassingulareseadasuperfície em questão.
65

Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider

Anger, Philipp 07 October 2014 (has links) (PDF)
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3/fb at a center-of-mass energy of 8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying WWjj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak WWjj production with same electric charge of the W bosons, inseparably comprising WW->WW electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard Model electroweak gauge bosons: Wγ->WZ and WZ->WZ. Three charged leptons and a neutrino from the decay of the final state bosons allow inferences about the scattering process. A distinct signature is provided by the two accompanying tagging jets as remnants of the incoming quarks radiating the initial electroweak gauge bosons. The cross section of the electroweak WZjj production was measured to σ(fiducial, observed) = (0.63 +0.32 -0.28 (stat.) +0.41 -0.24 (syst.)) fb and was found to be consistent with the Standard Model prediction at next-to-leading order in perturbative quantum chromodynamics, σ(fiducial, theory) = (0.31 +0.03 -0.05) fb. Unfolded differential cross sections of kinematic variables sensitive to models of new physics were derived. Anomalous quartic electroweak gauge couplings are introduced as dimensionless coupling parameters of additional operators within an effective field theory approach. Constraints on the parameters of operators with dimension eight were set employing a unitarization prescription based on form factors.
66

Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider

Anger, Philipp 01 September 2014 (has links)
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3/fb at a center-of-mass energy of 8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying WWjj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak WWjj production with same electric charge of the W bosons, inseparably comprising WW->WW electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard Model electroweak gauge bosons: Wγ->WZ and WZ->WZ. Three charged leptons and a neutrino from the decay of the final state bosons allow inferences about the scattering process. A distinct signature is provided by the two accompanying tagging jets as remnants of the incoming quarks radiating the initial electroweak gauge bosons. The cross section of the electroweak WZjj production was measured to σ(fiducial, observed) = (0.63 +0.32 -0.28 (stat.) +0.41 -0.24 (syst.)) fb and was found to be consistent with the Standard Model prediction at next-to-leading order in perturbative quantum chromodynamics, σ(fiducial, theory) = (0.31 +0.03 -0.05) fb. Unfolded differential cross sections of kinematic variables sensitive to models of new physics were derived. Anomalous quartic electroweak gauge couplings are introduced as dimensionless coupling parameters of additional operators within an effective field theory approach. Constraints on the parameters of operators with dimension eight were set employing a unitarization prescription based on form factors.
67

High Order Models in Diffusion MRI and Applications

Ghosh, Aurobrata 11 April 2011 (has links) (PDF)
Abstract in English below.
68

Calorimetry at a future Linear Collider

Green, Steven January 2017 (has links)
This thesis describes the optimisation of the calorimeter design for collider experiments at the future Compact Linear Collider (CLIC) and the International Linear Collider (ILC). The detector design of these experiments is built around high-granularity Particle Flow Calorimetry that, in contrast to traditional calorimetry, uses the energy measurements for charged particles from the tracking detectors. This can only be realised if calorimetric energy deposits from charged particles can be separated from those of neutral particles. This is made possible with fine granularity calorimeters and sophisticated pattern recognition software, which is provided by the PandoraPFA algorithm. This thesis presents results on Particle Flow calorimetry performance for a number of detector configurations. To obtain these results a new calibration procedure was developed and applied to the detector simulation and reconstruction to ensure optimal performance was achieved for each detector configuration considered. This thesis also describes the development of a software compensation technique that vastly improves the intrinsic energy resolution of a Particle Flow Calorimetry detector. This technique is implemented within the PandoraPFA framework and demonstrates the gains that can be made by fully exploiting the information provided by the fine granularity calorimeters envisaged at a future linear collider. A study of the sensitivity of the CLIC experiment to anomalous gauge couplings that {affect} vector boson scattering processes is presented. These anomalous couplings provide insight into possible beyond standard model physics. This study, which utilises the excellent jet energy resolution from Particle Flow Calorimetry, was performed at centre-of-mass energies of 1.4 TeV and 3 TeV with integrated luminosities of 1.5$\text{ab}^{-1}$ and 2$\text{ab}^{-1}$ respectively. The precision achievable at CLIC is shown to be approximately one to two orders of magnitude better than that currently offered by the LHC. In addition, a study into various technology options for the CLIC vertex detector is described.
69

Applications of the coupled cluster method to pairing problems

Snape, Christopher January 2010 (has links)
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atomic physics have found renewed interest in recent years. Given the high precision techniques involved in producing these trapped gas condensates, we would like to employ a suitably accurate many-body method to study such systems, preferably one which goes beyond the simple mean-field picture.The Coupled Cluster Method (CCM) is a widely applied and highly successful ab initio method in the realm of quantum many-body physics and quantum chemistry, known to be capable of producing extremely accurate results for a wide variety of different many-body systems. It has not found many applications in pairing problems however, at least not in a general sense. Our aim, therefore, is to study various models of pairing using a variety of CCM techniques - we are interested in studying the generic features of pairing problems and in particular, we are especially interested in probing the collective modes of a system which exhibits the BCS-BEC crossover, in either the BCS or BEC limit. The CCM seems a rather good candidate for the job, given the high precision results it can produce.
70

Dynamic Programming Algorithms for Semantic Dependency Parsing / Algoritmer för semantisk dependensparsning baserade på dynamisk programmering

Axelsson, Nils January 2017 (has links)
Dependency parsing can be a useful tool to allow computers to parse text. In 2015, Kuhlmann and Jonsson proposed a logical deduction system that parsed to non-crossing dependency graphs with an asymptotic time complexity of O(n3), where “n” is the length of the sentence to parse. This thesis extends the deduction system by Kuhlmann and Jonsson; the extended deduction system introduces certain crossing edges, while maintaining an asymptotic time complexity of O(n4). In order to extend the deduction system by Kuhlmann and Jonsson, fifteen logical item types are added to the five proposed by Kuhlmann and Jonsson. These item types allow the deduction system to intro-duce crossing edges while acyclicity can be guaranteed. The number of inference rules in the deduction system is increased from the 19 proposed by Kuhlmann and Jonsson to 172, mainly because of the larger number of combinations of the 20 item types. The results are a modest increase in coverage on test data (by roughly 10% absolutely, i.e. approx. from 70% to 80%), and a comparable placement to that of Kuhlmann and Jonsson by the SemEval 2015 task 18 metrics. By the method employed to introduce crossing edges, derivational uniqueness is impossible to maintain. It is hard to defien the graph class to which the extended algorithm, QAC, parses, and it is therefore empirically compared to 1-endpoint crossing and graphs with a page number of two or less, compared to which it achieves lower coverage on test data. The QAC graph class is not limited by page number or crossings. The takeaway of the thesis is that extending a very minimal deduction system is not necessarily the best approach, and that it may be better to start off with a strong idea of to which graph class the extended algorithm should parse. Additionally, several alternative ways of extending Kuhlmann and Jonsson are proposed. / Dependensparsning kan vara ett användbart verktyg för att få datorer att kunna läsa text. Kuhlmann och Jonsson kom 2015 fram till ett logiskt deduktionssystem som kan parsa till ickekorsande grafer med en asymptotisk tidskomplexitet O(n3), där "n" är meningens som parsas längd. Detta arbete utökar Kuhlmann och Jonssons deduktionssystem så att det kan introducera vissa korsande bågar, medan en asymptotisk tidskomplexitet O(n4) uppnås. För att tillåta deduktionssystemet att introducera korsande bågar, introduceras 15 nya logiska delgrafstyper, eller item. Dessa item-typer tillåter deduktionssystemet att introducera korsande bågar på ett sådant sätt att acyklicitet bibehålls. Antalet logiska inferensregler tags från Kuhlmanns och Jonssons 19 till 172, på grund av den större mängden kombinationer av de nu 20 item-typerna. Resultatet är en mindre ökning av täckning på testdata (ungefär 10 procentenheter, d v s från cirka 70% till 80%), och jämförbar placering med Kuhlmann och Jonsson enligt måtten från uppgift 18 från SemEval 2015. Härledningsunikhet kan inte garanteras på grund av hur bågar introduceras i det nya deduktionssystemet. Den utökade algoritmen, QAC, parsar till en svårdefinierad grafklass, som jämförs empiriskt med 1-endpoint-crossing-grafer och grafer med pagenumber 2 eller mindre. QAC:s grafklass har lägre täckning än båda dessa, och har ingen högre gräns i pagenumber eller antal korsningar. Slutsatsen är att det inte nödvändigtvis är optimalt att utöka ett mycket minimalt och specifikt deduktionssystem, och att det kan vara bättre att inleda processen med en specifik grafklass i åtanke. Dessutom föreslås flera alternativa metoder för att utöka Kuhlmann och Jonsson.

Page generated in 0.0417 seconds