• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 12
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 81
  • 50
  • 43
  • 39
  • 37
  • 33
  • 29
  • 26
  • 25
  • 22
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Unraveling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud

Rosenberg, J. L., Haislmaier, Karl, Giroux, M. L., Keeney, B. A., Schneider, S. E. 20 July 2014 (has links)
Since the discovery of the large (2 × 109 M ) intergalactic cloud known as the Leo Ring in the 1980s, the origin of this object has been the center of a lively debate. Determining the origin of this object is still important as we develop a deeper understanding of the accretion and feedback processes that shape galaxy evolution. We present Hubble Space Telescope/Cosmic Origins Spectrograph observations of three sightlines near the ring, two of which penetrate the high column density neutral hydrogen gas visible in 21 cm observations of the object. These observations provide the first direct measurement of the metallicity of the gas in the ring, an important clue to its origin. Our best estimate of the metallicity of the ring is 10% Z , higher than expected for primordial gas but lower than expected from an interaction. We discuss possible modifications to the interaction and primordial gas scenarios that would be consistent with this metallicity measurement.
172

The WEBT Campaign on the Blazar 3C 279 in 2006

Böttcher, M., Basu, S., Joshi, M., Villata, M., Arai, A., Aryan, N., Asfandiyarov, I. M., Bach, U., Bachev, R., Berduygin, A., Blaek, M., Buemi, C., Castro-Tirado, A. J., De Ugarte Postigo, A., Frasca, A., Fuhrmann, L., Hagen-Thorn, V. A., Henson, G., Hovatta, T., Hudec, R., Ibrahimov, M., Ishii, Y., Ivanidze, R., Jelínek, M., Kamada, M., Kapanadze, B., Katsuura, M., Kotaka, D. 01 December 2007 (has links)
The quasar 3C 279 was the target of an extensive multiwavelength monitoring campaign from 2006 January through April. An optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration was organized around target-of-opportunity X-ray and soft γ-ray observations with Chandra and INTEGRAL in 2006 mid-January, with additional X-ray coverage by RXTE and Swift XRT. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic timescale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other, while there was no obvious correlation between the optical and radio variability. After the ToO trigger, the optical flux underwent a remarkably clean quasi-exponential decay by about 1 mag, with a decay timescale of T d ∼ 12.8 days. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter wavelength behind longer wavelength variability throughout the RVB wavelength ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of α0 ∼ 1.5-2.0, may indicate a highly oblique magnetic field configuration near the base of the jet, leading to inefficient particle acceleration and a very steep electron injection spectrum. An alternative explanation through a slow (timescale of several days) acceleration mechanism would require an unusually low magnetic field of B ≲ 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C 279 and other flat-spectrum radio quasars with similar properties.
173

Metallicity and Ionization in High-Velocity Cloud Complex C

Collins, Joseph A., Shull, J. Michael, Giroux, Mark L. 01 March 2007 (has links)
We analyze HST and FUSE ultraviolet spectroscopic data for 11 sight lines passing through the infalling high-velocity cloud (HVC) Complex C. These sight lines pass through regions with H I column densities in the range N H I = 1018.1 -1020.1 cm-2. From [OI/HI] abundances, we find that Complex C metallicities range from 0.09 to 0.29 Z⊙, with a column density weighted mean of 0.13 Z ⊙. Nitrogen (N I) is underabundant by factors of (0.01 -0.07)(N/H)⊙, significantly less than oxygen relative to solar abundances. This pattern suggests nucleosynthetic enrichment by Type II SNe, consistent with an origin in the Galactic fountain or infalling gas produced in winds from Local Group galaxies. The range of metallicity and its possible (2 σ) dependence on NH I could indicate some mixing of primordial material with enriched gas from the Milky Way, but the mixing mechanism is unclear. We also investigate the significant highly ionized component of Complex C, detected in C IV, Si IV, and O VI, but not in N V. High-ion column density ratios show little variance and are consistent with shock ionization or ionization at interfaces between Complex C and a hotter surrounding medium. Evidence for the former mechanism is seen in the Mrk 876 line profiles, where the offset in line centroids between low and high ions suggests a decelerating bow shock.
174

Highly Ionized High-Velocity Clouds: Hot Intergalactic Medium or Galactic Halo?

Collins, Joseph A., Michael Shull, J., Giroux, Mark L. 10 April 2005 (has links)
We use spectroscopic data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) to study the wide range of ionization states of the "highly ionized high-velocity clouds" (HVCs). Studied extensively in O VI absorption, these clouds are usually assumed to be infalling gas in the Galactic halo at distances less than 50 kpc. An alternative model attributes the O VI (and O VII X-ray absorption) to cosmological structures of low-density, shock-heated intergalactic gas, distributed over 1-3 Mpc surrounding the Milky Way. The latter interpretation is unlikely, owing to the enormous required mass of gas (4 × 1012 M⊙). Our detection, in 9 of 12 sight lines, of low-ionization stages (C II/III/IV; Si II/III/IV) at similar high velocities as O vi requires gas densities far above that (nH ≈ 5 × 10-6 cm-3) associated with the warm-hot intergalactic medium (WHIM). These HVCs are probably cooling, multiphase gas in the Galactic halo, bow shocks, and interfaces between clouds falling through a hot, rotating gaseous halo. The velocity segregation of these HVCs in Galactic coordinates is consistent with a pattern in which infalling clouds reflect the sense of Galactic rotation, with peculiar velocities superposed.
175

Discovery of a Dwarf Poststarburst Galaxy Near a High Column Density Local Lyα Absorber

Stocke, John T., Keeney, Brian A., Mclin, Kevin M., Rosenberg, Jessica L., Weymann, R. J., Giroux, Mark L. 01 July 2004 (has links)
We report the discovery of a dwarf (MB = -13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI = 1015.85 cm-2 at cz = 1586 km s-1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71 h70-1 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ≈3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI = 1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%.
176

Highly Ionized High-Velocity Clouds Toward PKS 2155-304 and Markarian 509

Collins, Joseph A., Shull, J. Michael, Giroux, Mark L. 10 April 2004 (has links)
To gain insight into four highly ionized high-velocity clouds (HVCs) discovered by Sembach et al., we have analyzed data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) for the PKS 2155-304 and Mrk 509 sight lines. We measure strong absorption in O VI and column densities of multiple ionization stages of silicon (Si II, III, and IV) and carbon (C II, III, and IV). We interpret this ionization pattern as a multiphase medium that contains both collisionally ionized and photoionized gas. Toward PKS 2155-304, for HVCs at -140 and -270 km s-1, respectively, we measure logN(O VI) = 13.80 ± 0.03 and logN(O VI) = 13.56 ± 0.06; from Lyman series absorption, we find logN(H I) = 16.37 -0.14+0.22 and 15.23-0.22+0.38. The presence of high-velocity O VI spread over a broad (100 km s-1) profile, together with large amounts of low-ionization species, is difficult to reconcile with the low densities, ne ≈ 5 × 10-6 cm-3, in the collisional/photoionization models of Nicastro et al., although the HVCs show a similar relation in N(Si IV)/N(C IV) versus N(C II)/N(C IV) to that of high-z intergalactic clouds. Our results suggest that the high-velocity O VI in these absorbers does not necessarily trace the warm-hot intergalactic medium but instead may trace HVCs with low total hydrogen column density. We propose that the broad high-velocity O VI absorption arises from shock ionization, at bow shock interfaces produced from infalling clumps of gas with velocity shear. The similar ratios of high ions for HVC Complex C and these highly ionized HVCs suggest a common production mechanism in the Galactic halo.
177

Understanding Supermassive Black Holes Using the Dark Energy Survey and OzDES

Mudd, Dale Montaine 02 November 2017 (has links)
No description available.
178

Linking the Power Sources of Emission-Line Galaxy Nuclei from the Highest to the Lowest Redshifts

Constantin, Anca 24 November 2004 (has links)
No description available.
179

Quasar Structure from Microlensing in Gravitationally Lensed Quasars

Morgan, Christopher Warren 14 April 2008 (has links)
No description available.
180

Systèmes Lorentziens Lyman-alpha à grand décalage spectral: Etude de l'hydrogène moléculaire

Noterdaeme, Pasquier 05 November 2008 (has links) (PDF)
Les systèmes Lorentziens Lyman-alpha à grand décalage spectral, observés en absorption sur la ligne de visée de quasars, sont les signatures spectrales du milieu interstellaire dans l'Univers lointain. Peu d'outils sont cependant à notre disposition pour comprendre les propriétés physiques des objets associés. Une technique qui se base sur de la physique bien comprise et qui a été largement appliquée au milieu interstellaire local est l'étude de l'hydrogène moléculaire. Les propriétés radiatives et collisionnelles spécifiques de cette molécule en font une sonde très sensible aux conditions physiques du gaz.<br /><br />Dans cette thèse, j'étudie la présence d'hydrogène moléculaire dans le milieu interstellaire à grand décalage spectral en m'appuyant sur un échantillon unique de systèmes Lorentziens Lyman-alpha observés à grand rapport signal-à-bruit et haute résolution spectrale. Je présente des travaux dont l'objectif est de comprendre les propriétés et les conditions physiques du gaz neutre associé à ces systèmes (température, densité, composition chimique, fraction moléculaire, contenu en poussières, intensité du champ de radiation incident). <br /><br />J'effectue en parallèle une recherche systématique et une étude statistique des systèmes Lorentziens afin de mesurer le contenu en gaz neutre de l'Univers, caractériser sa distribution et son évolution au cours du temps et contraindre ainsi la formation des galaxies.<br /><br />Je montre enfin la possibilité de détecter et d'étudier d'autres molécules telles que l'hydrogène moléculaire deutéré et le monoxyde de carbone dans le milieu interstellaire à grand décalage spectral. Les outils d'analyse automatique de spectres développés dans cette thèse ont conduit à la première détection de CO dans un tel milieu, ouvrant la voie à l'astrochimie du milieu interstellaire dans l'Univers lointain.

Page generated in 0.0427 seconds