Spelling suggestions: "subject:"préparation membranaire"" "subject:"répartition membranaire""
1 |
Nouveaux outils exploratoires et développement d'approches thérapeutiques dans les dysferlinopathies primaires / Development of novel diagnosis tools and exploration of innovative therapeutic approaches in primary dysferlinopathiesWein, Nicolas 09 December 2010 (has links)
Les dysferlinopathies constituent un groupe de dystrophies musculaires autosomiques récessives comprenantprincipalement la myopathie des ceintures (LGMD) de type 2B et la myopathie distale de Miyoshi. Elles sont causéespar des mutations dans le gène DYSF qui se situe dans la région chromosomique 2p13.1-13.3 (NM_003494). Ce gènecomporte 55 exons répartis sur plus de 230 kb. Il est exprimé principalement dans le muscle squelettique etcardiaque, mais également dans d'autres tissus (placenta...) et types cellulaires tels que lesmonocytes/macrophages. La dysferline (2080 acides aminés, 237 kDa, O75923) fait partie de la famille des Ferlineset comporte 7 domaines C2, senseur de calcium et un domaine transmembranaire C-terminal.La dysferline participe à la formation des tubules-T et à la fusion des myoblastes en myotubes avec lamyoferline (un autre membre de la famille). Elle est localisée au sarcolemme de la fibre musculaire squelettiqueadulte, où elle joue un rôle dans sa réparation. En effet, chez l’homme comme dans les modèles murins, en absencede dysferline, des vésicules, dont la nature n’est pas clairement établie, s’accumulent sous le sarcolemme lésé sansfusionner avec celui-ci. Elle interagirait avec plusieurs protéines membranaires ou cytosoliques, dont certaines(comme la cavéoline 3) sont aussi impliquées dans d’autres formes de LGMD.Au cours de ma thèse, mon travail a été axé d’une part sur l’amélioration des techniques de diagnostic : étudede délétion/duplication dans le gène DYSF par CGH et le développement d’un test permettant d’évaluerl’absence/présence de la dysferline à partir de sang total par des techniques de FACS et d’immunofluorescence.D’autre part j’ai également étudié la pertinence d’approches thérapeutiques. Ainsi, nous avons mis en évidence unelarge délétion homozygote des ¾ du gène DYSF chez une patiente présentant un phénotype modéré dedysferlinopathies. Cette délétion permet cependant la production d’une dysferline tronquée. L’identification decette miniprotéine, la première identifiée à ce jour a permis de mettre en évidence l’aspect en partie modulaire dela dysferline. Une autre donnée sur le caractère modulaire de la dysferline est apparue dans la littérature, cette foismontrant le caractère dispensable de l’exon 32. Sur la base de cette observation clinique, nous avons développéune approche thérapeutique par saut d’exon pour les dysferlinopathies, en démontrant dans un premier temps safaisabilité technique sur l’exon 32.L’ensemble de ces travaux permettront probablement l’amélioration du diagnostic différentiel desdysferlinopathies, tout en fournissant de nouvelles pistes pour comprendre les rôles de la dysferline et offrir ainsides pistes thérapeutiques pour le traitement de patients souffrant de ces pathologies. / Dysferlinopathies are a group of autosomal recessive muscular disorders including mainly limb girdlemuscular dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), caused by mutation in DYSF gene (2p13.1-13.3). It is composed by 55 exons spreading on 234 kb of genomic DNA and it is expressed mainly in skeletal and heart muscle and monocytes/macrophages.Dysferlin (2080 amino-acids, molecular weight 237 kDa) belongs to the Ferlin family as Myoferline, which is also expressed in muscle. Dysferlin is involved with Myoferlin in myoblasts fusion and T-tubule formation. In adult skeletal muscle, Dysferlin is localized at the sarcolemma where it plays its main function: the sarcolemma repair after muscular wounding. It has been suggested that Dysferlin allows them to fuse with the plasma membrane in order to provide the required plasma membrane to reseal the wound. During these years, my work was essentially focused on the improvement of diagnosis technique (evaluation of CGH array to detect deletion/duplication event in DYSF gene and development of test able to detect absence/presence of Dysferlin in whole blood), the functional exploration of diagnosis technique (evaluation of CGH array to detect deletion/duplication event in DYSF gene and development of test able to detect absence/presence of Dysferlin in whole blood), and the development of promising therapeutics approaches: AAV gene transfer of a minidysferlin which was identified in patient presenting a mild phenotype and for the first time the demonstration of the feasibility of an exon-skipping therapeutics strategy for dysferlinopathies.
|
2 |
Etude des réponses cellulaires aux endommagements membranairesJimenez, Ana 20 September 2012 (has links) (PDF)
L'intégrité des membranes cellulaires est essentielle à la survie et au bon fonctionnement de la cellule. Or, ces membranes sont constamment endommagées. La première partie de cette étude porte sur la réparation de la membrane plasmique perforée suite à l'exposition à des contraintes physiques, chimiques ou biochimiques. Nous décrivons un nouveau mécanisme de réparation de la membrane plasmique qui met en jeu le complexe III de la machinerie des ESCRT (endosomal sorting complex required for transport). Nos observations suggèrent que les ESCRTs seraient impliquées dans l'élimination de portions endommagées de membrane plasmique par bourgeonnement. Nos résultats portent une information novatrice dans le domaine des ESCRTs et pourrait aider à comprendre plus en détail le mode de fonctionnement des ESCRTs. La deuxième partie de cette étude porte sur la réponse cellulaire à l'endommagement physique (laser) ou chimique (par pontage chimique) d'organites de trafic. Nous montrons l'implication des mécanismes d'autophagie dans la réponse à l'endommagement des endosomes et de l'appareil de Golgi. Cette réponse comprend un recrutement rapide de la protéine LC3 (une des seules protéines détectables sur les membranes des autophagosomes matures). Nous avons montré également l'implication d'une ubiquitination rapide ainsi que du recrutement des protéines p62 et NBR1 (capables de lier à la fois l'ubiquitine et la protéine LC3). Le mécanisme observé présente de nombreux points communs avec d'autres mécanismes d'autophagie sélective mais révèle néanmoins des particularités comme le recrutement direct de LC3 sur les membranes de l'appareil de Golgi endommagé. Notre étude comprend donc l'étude de deux mécanismes cellulaires de réponse aux endommagements de membrane qui mettent en évidence l'existence de mécanismes de surveillance systématique de l'homéostasie des organelles et de la membrane plasmique. Ces mécanismes sont adaptés à la nature des membranes endommagées
|
3 |
Le rôle des Annexines dans la réparation membranaire des cellules musculaires squelettiques humaines / Annexins in membrane repair of human muscle cellsCroissant, Coralie 09 December 2019 (has links)
Les dystrophies musculaires sont un groupe de pathologies génétiques qui cause une faiblesse et une perte progressive des muscles squelettiques. Parmi elles, la dystrophie des ceintures de type 2B (LGMD2B) est caractérisée par des mutations dans le gène de la dysferline, entrainant de sévères dysfonctionnements, dont un défaut de réparation membranaire. Les ruptures de la membrane plasmique sont des évènements physiologiques induits par des contraintes mécaniques, comme lors de la contraction des fibres musculaires. Les cellules eucaryotes possèdent donc une machinerie protéique assurant une réparation rapide de larges ruptures membranaires. La liste exhaustive des composants de la machinerie de réparation et leur mode d’action reste à établir.Les annexines (Anx) sont de petites protéines solubles, au nombre de 12 chez les mammifères, qui partagent la propriété de lier les membranes exposant des phospholipides chargés négativement en présence de Ca2+. De nombreuses études ont montré l’implication de certaines Anx (AnxA1, A2, A4, A5, A6 et A7) dans la réparation membranaire de différents types cellulaires (muscle, cancer, endothélium…) et dans différentes espèces (souris, poisson-zèbre, homme…). La présence des Anx dans le muscle squelettique, et la participation de plusieurs membres de cette famille dans la réparation membranaire, soulèvent la question d’un rôle collectif de ces protéines dans la protection et la réparation des ruptures du sarcolemme.Les objectifs de ce travail ont été 1) d’identifier les Anx impliquées dans la réparation membranaire des cellules musculaires squelettiques humaines, 2) développer une stratégie de microscopie corrélative pour étudier le site de rupture et la distribution subcellulaire des Anx à haute résolution, 3) élucider la fonction des Anx dans le mécanisme de réparation, et 4) analyser les Anx dans des cellules musculaires dystrophiques. Avec des approches en biologie cellulaire et moléculaire, et en microscopie de fluorescence et électronique, nous avons donc étudié le comportement des Anx lors d’un dommage du sarcolemme.Nous avons ainsi montré que les AnxA1, A2, A4, A5 et A6 sont exprimées dans les myoblastes et les myotubes humains, et sont recrutées au site de rupture quelques secondes après le dommage, en formant une structure dense à l’extérieur du myotube endommagé appelé domaine « cap ». De plus, nous avons pu déterminer l’ordre relatif de recrutement des Anx au site membranaire endommagé. Les premières Anx à être recrutées sont l’AnxA1, suivies des AnxA6 et A5, les moins sensibles au Ca2+. Les dernières Anx recrutées sont les plus sensibles au Ca2+, les AnxA4 puis A2, qui semblent se lier à des vésicules intracellulaires initialement éloignées du site de rupture. Nous avons également étudié l’ultrastructure du site de rupture à haute résolution. Nos résultats ont révélé que le domaine « cap » correspondait à une accumulation de matériel membranaire qui est associé au Anx. En s’appuyant sur nos résultats et la littérature, nous avons proposé un modèle de réparation membranaire, impliquant les AnxA1, A2, A4, A5 et A6, dans les cellules musculaires squelettiques humaines. Nous nous sommes également intéressés à l’expression des Anx dans des lignées de cellules musculaires dystrophiques issues de patients atteints de dystrophies musculaires des ceintures de type 2B (déficients en dysferline) et 1C (déficients en cavéoline-3). Nous avons ainsi montré que le contexte pathologique perturbait l’expression de certaines Anx, sans en modifier leur localisation subcellulaire.En conclusion, ce travail de thèse montre que plusieurs membres de la famille des Anx sont impliqués dans la réparation membranaire, et agissent de concert pour réparer un dommage de la membrane plasmique. L’implication des Anx dans d’autres pathologies, comme le cancer et la pré-éclampsie, renforce l’intérêt de leur étude dans les processus de réparation membranaire et en font une cible thérapeutique potentielle. / Muscular dystrophy encompasses a group of genetic disorders which cause progressive weakness and wasting of skeletal muscle. Among them, limb girdle muscular dystrophy type 2B (LGMD2B) is characterized by mutations in the dysferlin gene leading to several dysfunctions including a failure in cell membrane repair process. Cell membrane disruption is a physiological phenomenon induced by mechanical stress, such as contraction of muscle fibers. Thus, eukaryotic cells have a repair protein machinery ensuring a rapid resealing of large cell membrane ruptures. The exhaustive list of components of the repair machinery and their interplay remain to be established.The annexin (Anx) family consists of twelve soluble proteins in mammals and share the property of binding to membranes exposing negatively charged phospholipids in a Ca2+-dependent manner. Several studies have shown the involvement of Anx (AnxA1, A2, A4, A5, A6 and A7) in membrane repair of different cell types (muscle, cancer, endothelium…) in different species (mouse, zebrafish, human…). The presence of different Anx in skeletal muscle, together with the participation of several members of the Anx family in membrane repair processes, raise the question of a collective role of these proteins in the protection and repair of sarcolemma injuries.The PhD project aimed 1) at identifying Anx that are essential for membrane repair in human skeletal muscle cells, 2) developing a correlative light and electron microscopy to study the wounded site and the Anx distribution at high resolution, 3) elucidating the function of each Anx in this process and 4) analyzing Anx in dystrophic muscle cells. Using approaches including cellular and molecular biology, fluorescence microscopy and transmission electron microscopy, we studied the behavior of Anx during sarcolemma damage.We showed that AnxA1, A2, A4, A5 and A6 are expressed in human myoblasts and myotubes, and are recruited at the disruption site within seconds after the sarcolemmal damage, forming a dense structure outside the cell, named the “cap” domain. Furthermore, we determined the relative order of Anx recruitment at the disruption site. The first Anx recruited are AnxA1, followed by AnxA6 and A5, the less sensitive to Ca2+. The last Anx recruited are the most sensitive to Ca2+, AnxA4 and A2. AnxA2 and A4 are instead rapidly recruited to intracellular vesicles present deeper in the cytosol. We also studied the ultrastructure of the disruption site at high resolution. Our results revealed that the “cap” domain correspond to a disorganized membrane structure, associated with the Anx. Thanks to our results and the literature, we have proposed a model for membrane repair involving Anx in human skeletal muscle cells. We also looked at the expression of Anx in dystrophic muscle cell lines from patients with limb girdle muscular dystrophy type 2B (dysferline deficient) and 1C (deficient in cadaveoline-3). We have thus shown that the pathological context disrupts the expression of some Anx, without altering their subcellular location.In conclusion, this work shows that several members of the Anx family are involved in membrane repair and act together to repair plasma membrane damage. The implication of Anx in other pathologies, such as preeclampsia or cancer, reinforces the interest of their study in the process of membrane repair.
|
4 |
Rôle de l'Annexine-A5 dans la réparation membranaire du muscle strié squelettique et du placenta humains / Role of Annexin-A5 in cell membrane repair in human skeletal muscle and placentaCarmeille, Romain 27 November 2015 (has links)
La membrane plasmique est un assemblage supramoléculaire qui délimite la cellule. C’est une structure fine, complexe et dynamique assurant des fonctions multiples et vitales pour la cellule. Sa rupture est un évènement physiologique pour les cellules soumises à des stress mécaniques fréquents et/ou importants, comme les cellules épithéliales, les cellules endothéliales ou les cellules musculaires. Dans des conditions physiopathologiques, la membrane plasmique peut également être endommagée par l’insertion de toxines bactériennes formant des pores (PFTs, pour « pore forming toxins »). Le processus de réparation membranaire et la machinerie protéique associée sont encore mal connus. Connaître les partenaires protéiques et comprendre les mécanismes mis en jeu durant le processus de réparation de la membrane plasmique sont deux enjeux fondamentaux majeurs. En effet, il a été établi qu’une défaillance du processus de réparation membranaire pour les fibres musculaires est la cause principale de certaines dystrophies musculaires. La machinerie protéique de réparation comprend des protéines comme la dysferline, la cavéoline-3 et certaines Annexines (Anx). Les Anx appartiennent à une superfamille de protéines répandue chez la plupart des eucaryotes, qui ont la propriété commune de se lier aux membranes biologiques en présence de calcium (Ca2+). Certaines Anx, comme l’AnxA5, une fois liées aux membranes biologiques s’auto-assemblent spontanément en réseau-2D. Lors de ce travail de thèse, nous avons étudié le rôle de l’AnxA5 dans la réparation membranaire des trophoblastes placentaires et des cellules du muscle squelettique humain. Pour les deux types cellulaires, nous avons montré que l’AnxA5 est un acteur indispensable du processus de réparation membranaire dans le cas de ruptures mécaniques. En associant des approches de microscopie de fluorescence et de microscopie électronique à transmission (MET), nous avons mis en évidence que dans ces cellules, le mécanisme de réparation est principalement basé sur la formation d’un « patch » lipidique. Dans les cellules musculaires, les expériences de MET ont mis en évidence qu’un pool d’AnxA5 endogène se lie aux bords du site de rupture quelques secondes après la lésion du sarcolemme. Ceci suggère qu’après rupture de la membrane plasmique, l’augmentation locale de la concentration calcique intracellulaire provoque la liaison de l’AnxA5 spécifiquement aux bords de la région membranaire lésée où elle forme un réseau-2D. Le réseau-2D stabiliserait localement la membrane et préviendrait sa déchirure, induite par les forces de tensions exercées par le cytosquelette cortical. Nous avons également montré que l’AnxA5 ne semble pas impliquée dans la réparation de la membrane plasmique après insertion de PFTs. Ceci suggère que différents mécanismes de réparation existent et que leur mise en place dépend probablement du type ou de l’importance des dommages. Finalement nous avons étendu notre étude à des lignées cellulaires établies à partir de patients diagnostiqués comme souffrant de dystrophies des ceintures de type 2B (déficience en dysferline) et 1C (déficience en cavéoline-3), respectivement. Nous avons montré, pour ces lignées, que la déficience en dysferline ou cavéoline-3 provoque un défaut de réparation dans le cas des ruptures mécaniques de la membrane plasmique. Dans ces cellules musculaires pathologiques intactes ou endommagées, l’AnxA5 a le même comportement, ce qui suggère que l’action de l’AnxA5 est indépendante de ces protéines. A la différence des cellules déficientes en dysferline, nous avons observé que les cellules déficientes en cavéoline-3 sont capables de réparer efficacement des lésions créées par l’insertion de PFTs dans le sarcolemme. Ce résultat supporte l’hypothèse de l’existence de plusieurs mécanismes de réparation. En conclusion, ce travail montre que l’AnxA5 est un composant clé de la machinerie de réparation dans le cas des ruptures mécaniques. / Plasma membrane is the supramolecular assembly that delimits the cell. It is a thin, dynamic and complex structure, ensuring multiple and vital cell functions. Its disruption is a physiological event occurring in cells submitted to frequent mechanical stresses, such as endothelial cells, epithelial cells and muscle cells. It is also a physiological event for cells exposed to pore forming bacterial toxins (PFTs). Membrane repair mechanisms and associated protein machinery are still poorly understood. This knowledge is, however, essential for obvious physiopathological issues. Indeed, a defect of membrane repair in muscle cells leads to some muscular dystrophies. Membrane repair machinery includes proteins such as dysferlin, MG-53, caveolin-3 and some Annexins (Anx). Anx belong to a superfamily of proteins widely spread in most of eukaryotes, which share the property of binding to biological membranes in the presence of calcium (Ca2+). Here, we investigated the role of AnxA5 in cell membrane repair of human trophoblastic and skeletal muscle cells. We showed that AnxA5 is required for membrane repair of mechanical damages in the two cell types. By combining fluorescence and transmission electron microscopy approaches, we evidenced that membrane repair mechanism in these cells is based on the formation of a lipid “patch”. In human muscle cells, TEM experiments revealed that a pool of endogenous AnxA5 binds to the edges of the torn sarcolemma as soon as a few seconds after membrane disruption. Our results suggest the following mechanism: triggered by the local increase in Ca2+ concentration, AnxA5 molecules bind to PS exposed at the edges of the torn membrane, where they self-assemble into 2D arrays. The formation of 2D arrays strengthens the damaged sarcolemma, counteracts the tensions exerted by the cortical cytoskeleton and thus prevents the expansion of the tear. We showed also that a pool of endogenous AnxA5 binds to intracellular vesicles that obstruct the wounding site. It is likely these vesicles, once associated one to each other, ensure membrane resealing. Our results suggest that sarcolemma repair of damages caused by PFTs is independent of AnxA5. Therefore, different membrane repair mechanisms may exist, their occurrence probably depending on the type and/or the size of damages. Finally, we performed studies on muscle cells established from patients diagnosed with limb girdle muscular dystrophies type 2B (dysferlin-deficient) and 1C (caveolin-3-deficient), respectively. We found that dysferlin or caveolin-3 deficiency leads to a defect of membrane repair, in the case of mechanical damages. AnxA5 behaved similarly in these damaged cells and wild-type cells, suggesting that its function is independent of dysferlin or caveolin-3. Unlike dysferlin-deficient cells, damages created by PFTs are efficiently repaired in caveolin- 3-deficient cells. This result supports the hypothesis that different mechanisms occur in muscle cells, depending on the type of damage. In conclusion, this work indicates that AnxA5 is a key component of the membrane repair machinery, in the case of mechanical disruptions. Our results enable to propose a detailed mode of action for AnxA5.
|
Page generated in 0.1531 seconds