Spelling suggestions: "subject:"réseaux dde neurones impulsionnel"" "subject:"réseaux dde neurones impulsionnelles""
1 |
Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels / Computational method and neuromorphic processor design applied to event-based sensorsMesquida, Thomas 20 December 2018 (has links)
L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur. / Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors.
|
2 |
Implémentation d'un système préattentionnel avec des neurones impulsionnelsChevallier, Sylvain 25 June 2009 (has links) (PDF)
Les neurones impulsionnels prennent en compte une caractéristique fondamentale des neurones biologiques : la capacité d'encoder l'information sous forme d'événements discrets. Nous nous sommes intéressés à l'apport de ce type de modèles dans le cadre de la vision artificielle, dont les contraintes nous ont orienté vers le choix de modèles simples, adaptés à la rapidité de traitement requise. Nous décrivons une architecture de réseaux pour encoder et extraire des saillances utilisant la discrétisation induite par les neurones impulsionnels. La carte de saillances est obtenue à partir de la combinaison, spatiale et temporelle, de différentes cartes de modalités visuelles (contrastes, orientations et couleurs) à différentes échelles spatiales. Nous proposons une méthode de filtrage neuronal pour construire les cartes de modalité visuelle. Cette méthode réalise le filtrage de façon graduelle : plus le temps de traitement alloué à l'algorithme est important, plus le résultat est proche de celui obtenu avec un filtrage par convolution. L'architecture proposée donne en sortie les saillances triées temporellement dans l'ordre de leur importance. Nous avons placé en aval de cette architecture un autre réseau de neurones impulsionnels, s'inspirant des champs neuronaux, qui permet de sélectionner la zone la plus saillante et de maintenir une activité constante sur cette zone. Les résultats expérimentaux montrent que l'architecture proposée est capable d'extraire des saillances dans une séquence d'images, de sélectionner la saillance la plus importante et de maintenir la focalisation sur cette saillance, même dans un contexte bruité ou quand la saillance se déplace.
|
Page generated in 0.1098 seconds