Spelling suggestions: "subject:"1234yf(E)""
1 |
Flow boiling heat transfer, pressure drop and dryout characteristics of low GWP refrigerants in a vertical mini-channelAnwar, Zahid January 2014 (has links)
Two-phase heat transfer in mini/micro-channels is capable of meeting the high cooling demands of modern high heat flux applications. The phase change process ensures better temperature uniformity and control for local hot spots. Furthermore, these compact channels could be helpful in reducing the required charge and material inventories.Environmental concerns—mainly ozone depletion and global warming—have instigated a search for new alternatives in refrigeration industry. While new compounds are being developed to address stringent legislative demands, natural alternatives are also coming into prominence. A limited number of investigators have reported on thermal performance of such alternatives. The current study is therefore focused on saturated flow boiling heat transfer, pressure drop and dryout characteristics for three low global warming potential (GWP) refrigerants (R152a, R600a and R1234yf) in a vertical mini-channel.In this study experiments were carried out by uniformly heating a test section (stainless steel tube with 1.60 mm inside diameter and 245 mm heated length) at 27 and 32 oC saturation temperature with 50-500 kg/m2s mass velocities. The effects of various parameters of interest (like heat flux, mass flux, system pressure, vapor quality, operating media) on flow boiling heat transfer, frictional pressure drop and dryout characteristics were recorded. R134a, which has been widely used in several applications, is utilized as a reference case for comparison of thermal performance in this study.Experimental results for saturated boiling heat transfer showed strong influence of heat flux and system pressure with insignificant contributions from mass flux and vapor quality. Two phase frictional pressure drop increased with mass flux, vapor quality and with reduced operating pressure. The dryout heat flux remained unaffected with variation in saturation temperature, critical vapor quality in most cases was about 85%. The experimental results (boiling heat transfer, two-phase pressure drop and dryout heat flux) were compared with well-known macro and micro-scale correlations from the literature. / <p>QC 20141124</p>
|
2 |
Étude expérimentale et simulée d'une installation de thermofrigopompe pour la production de froid et le dessalement / Experimental and simulation study of a heat pump for simultaneous cooling and desalinationDiaby, Ahmadou Tidiane 30 November 2017 (has links)
Une thermofrigopompe (TFP) est une machine frigorifique qui produit du froid et de la chaleur utiles. L’objectif de ces travaux est de développer le concept de thermofrigopompe pour la production de froid et le dessalement. Le dessalement est réalisé en utilisant la chaleur rejetée au condenseur de la TFP. La technique de dessalement retenue après étude bibliographique est l’AGMD (air gap membrane distillation) pour ses températures de fonctionnement compatibles avec la température de condensation des machines frigorifiques classiques. Ce procédé de distillation a été caractérisé grâce à une installation pilote pour diverses conditions de températures, de débits, d’épaisseurs d’air gap et de compositions de solutions. Une étude de longue durée associée à une observation au MEB a permis évaluer le niveau colmatage des membranes. Un modèle numérique a ensuite été développé à partir des premiers résultats expérimentaux. Des simulations ont permis de dégager des tendances de comportement d’une machine couplée TFPMD. Enfin, un prototype a été construit à partir d’un petit réfrigérateur et d’une cellule d’AGMD fabriquée par impression 3D. Les mesures expérimentales ont permis de valider le concept de TFPMD et d’obtenir de premiers résultats de performance prometteurs. La valorisation de l’énergie thermique perdue par les équipements frigorifiques pour effectuer du dessalement semble donc une solution intéressante au manque d'eau douce qui peut survenir dans de nombreuses régions de la planète. / A heat pump or a refrigerating device produces simultaneously cooling and heating energies. The objective of this research is to develop the concept of heat pump for simultaneous cooling and desalination. Desalination is carried out by recovering the heat rejected by the condenser of the machine. The desalination technique, chosen thanks to the literature review, is AGMD (air gap membrane distillation) because of the compatibility of operating temperatures with the condensing temperature of standard heat pumps. AGMD was characterized using a pilot for different conditions of temperature, flow rate, air gap thickness and solution compositions. A long term study associated to scanning electron microscope images enabled to evaluate the fouling level of the membrane. A numerical model was then developed using the first experimental results. Simulations have revealed patterns of behaviour for a coupled heat pump and AGMD machine. Finally, a prototype was built with a small refrigerator and an AGMD cell manufactured by 3D printing. Experimental measurements were used to validate the concept of heat pump for simultaneous cooling and desalination and to obtain promising performance results. The valorization of the heat lost by refrigeration equipment for desalination seems therefore an interesting solution to overcome the lack of fresh water that can occur in many regions of the planet.
|
3 |
[pt] MODELAGEM DE UM CIRCUITO DE TERMOSSIFÃO DE BAIXO IMPACTO AMBIENTAL COM APLICAÇÃO EM RESFRIAMENTO DE ELETRÔNICOS / [en] MODELING OF A TWO-PHASE THERMOSYPHON LOOP WITH LOW ENVIRONMENTAL IMPACT REFRIGERANT APPLIED TO ELECTRONIC COOLINGVERONICA DA ROCHA WEAVER 04 October 2021 (has links)
[pt] Diante dos constantes avanços da tecnologia os dispositivos eletrônicos vêm passando por um processo de miniaturização, ao mesmo tempo em que sustentam um aumento de potência. Essa tendência se mostra um desafio para seu gerenciamento térmico, uma vez que os sistemas de resfriamento típicos para eletrônicos utilizam ar como fluido de trabalho, e o seu baixo coeficiente de transferência de calor limita sua capacidade de atender às necessidades térmicas da indústria atual. Nesse sentido, o resfriamento bifásico tem sido considerado uma solução promissora para fornecer resfriamento adequado para dispositivos eletrônicos.
Circuitos de termossifão bifásico combinam a tecnologia de resfriamento bifásico com sua inerente natureza passiva, já que o sistema não requer uma bomba para fornecer circulação para seu fluido de trabalho, graças às forças da gravidade e de empuxo. Um dissipador de calor de microcanais, localizado bem em cima do dispositivo eletrônico, dissipa o calor gerado. Isto o torna uma solução de baixo custo e energia. Além disso, ter um circuito de termossifão operando com um refrigerante de baixo GWP, como o R-1234yf, resulta em baixo impacto para o meio ambiente, uma vez que é um refrigerante ecologicamente correto e o sistema tem baixo ou nenhum consumo de energia.
Este trabalho fornece um modelo numérico detalhado para a simulação de um circuito de termossifão bifásico, operando em condições de regime permanente. O circuito compreende um evaporador (chip e dissipador de calor de micro-aletas), um riser, um condensador refrigerado a água de tubo duplo e um downcomer. Equações fundamentais e constitutivas foram estabelecidas para cada componente. Um método numérico de diferenças finitas, 1-D para o escoamento do fluido por todos os componentes do sistema, e 2-D para a condução de calor no chip e evaporador foi empregado.
O modelo foi validado com dados experimentais para o refrigerante R134a, mostrando uma discrepância em relação ao fluxo de massa em torno de 6 por cento, para quando o sistema operava sob regime dominado pela gravidade. A pressão de entrada do evaporador prevista apresentou um erro relativo máximo de 4,8 por cento quando comparada aos resultados experimentais. Além disso, a maior discrepância da temperatura do chip foi inferior a 1 grau C.
Simulações foram realizadas para apresentar uma comparação de desempenho entre o R134a e seu substituto ecologicamente correto, R1234yf. Os resultados mostraram que quando o sistema operava com R134a, ele trabalhava com uma pressão de entrada no evaporador mais alta, assim como, com um fluxo de massa mais alto. Por causa disso, o R134a foi capaz de manter a temperatura do chip mais baixa do que o R1234yf. No entanto, essa diferença na temperatura do chip foi levemente inferior a 1 grau C, mostrando o R1234yf como comparável em desempenho ao R134a. Além disso, o fator de segurança da operação do sistema foi avaliado para ambos os refrigerantes, e para um fluxo de calor máximo do chip de 33,1 W/cm2, R1234yf mostrou um fator de segurança acima de 3. Isso significa que o circuito de termossifão pode operar com segurança abaixo do ponto crítico de fluxo de calor.
Dada a investigação sobre a comparação de desempenho dos refrigerantes R134a e R1234yf, os resultados apontaram o R1234yf como um excelente substituto ecologicamente correto para o R134a, para operação em um circuito de termossifão bifásico. / [en] Given the constant advances in technology, electronic devices have been going through a process of miniaturization while sustaining an increase in power. This trend proves to be a challenge for thermal management since commonly electronic cooling systems are air-based, so that the low heat transfer coefficient of air limits its capacity to keep up with the thermal needs of today s industry. In this respect, two-phase cooling has been regarded as a promising solution to provide adequate cooling for electronic devices.
Two-phase thermosyphon loops combine the technology of two-phase cooling with its inherent passive nature, as the system does not require a pump to provide circulation for its working fluid, thanks to gravity and buoyancy forces. A micro-channel heat sink located right on top of the electronic device dissipates the heat generated. This makes for an energy and cost-efficient solution. Moreover, having a thermosyphon loop operating with a low GWP refrigerant such as R-1234yf results in low impact for the environment since it is an environmentally friendly refrigerant, and the system has low to none energy consumption.
This work provides a detailed numerical model for the simulation of a two-phase thermosyphon loop operating under steady-state conditions. The loop comprises an evaporator (chip and micro-fin heat sink), a riser, a tube-in-tube water-cooled condenser and a downcomer. Fundamental and constitutive equations were established for each component. A finite-difference method, 1-D for the flow throughout the thermoysphon s components and 2-D for the heat conduction in the evaporator and chip, was employed. The model was validated against experimental data for refrigerant R134a, showing a mass flux discrepancy of around 6 percent for when the system operated under gravity dominant regime. The predicted evaporator inlet pressure showed a maximum relative error of 4.8 percent when compared to the experimental results. Also, the chip temperature s largest discrepancy was lower than 1 C degree.
Simulations were performed to present a performance comparison between R134a and its environmentally friendly substitute, R1234yf. Results showed that when the system operated with R134a, it yielded a higher evaporator inlet pressure as well as a higher mass flux. Because of that, R134a was able to keep the chip temperature lower than R1234yf. Yet, that difference in chip temperature was slightly lower than 1 C degree, showing R1234yf as comparable in performance to R134a. In addition, the safety factor of the system s operation was evaluated for both refrigerants, and for a maximum chip heat flux of 33.1 W/cm2, R1234yf showed a safety factor above 3. This means the thermosyphon loop can operate safely under the critical heat flux.
Given the investigation on the performance comparison of refrigerants R134a and R1234yf, results pointed to R1234yf being a great environmentally friendly substitute for R134a for the two-phase thermosyphon loop.
|
4 |
<b>Exploratory Study on Advanced Heat Pump Water Heaters for Building Electrification and Decarbonization</b>Mridul Brijmohan Rathi (19195645) 24 July 2024 (has links)
<p dir="ltr">Energy consciousness initiatives have seen a recent uptick to curb the ever growing concerns of global warming. Heat Pumps are a crucial piece of technology for these efforts, as they consume lower energy than the requirement they satisfy and are typically used for refrigeration and HVAC systems. Hybrid Heat Pump Water Heater (HPWH) technologies have seen increased adoption, and the improvement of these technologies could pay dividends in the long run. </p><p dir="ltr">This project explores the optimal design space of HPWHs within the context of the Department of Energy Guidelines for their performance rating and compares several up and coming refrigerants with lower GWP than the current market dominant refrigerant, R-134a, to provide consistent performance with improvements on the environmental front along with potential cost improvements on the manufacturing front. For this purpose, Dymola, a simulation software that employs the Modelica language for modeling complex dynamic systems, is employed to study the transient behavior of a market example Heat Pump Water Heater. </p><p dir="ltr">The results of these simulations were validated using experimental data gathered in the laboratory using relevant instrumentation on the physical device and manufacture specified performance ratings to compare the validity of the simulation results. The results of the study indicated the presence of a multi-dimensional design space with a defined set of possible combinations for device implementation. Within that feasible region, there exist multiple trajectories of iso-preference which alter the overall device performance, and the careful study of these parameters and their implications on the device performance can lead to a more robust design pathway for future improvements of the device. The work also contextualizes these improvements by quantifying the relative importance of different parameters upon the final performance of the device, showing how to identify which parameters to focus on when embarking upon an improvement journey. Additionally, preliminarily ideal specifications for the device operation under different refrigerants studied were also identified to provide similar or better performance to the current device. </p><p dir="ltr">The study showed that when matching mass flux rates, R-152a, R-290, and R-600a outperform R-134a in terms of expected COP. Of the 3, only R-290 uses a smaller compressor size than the baseline R-134a cycle for achieving the required heating capacity. The other refrigerants studied do not improve upon the COP of the cycle, but do have benefits over R-134a in terms of their respective GWPs. </p><p dir="ltr">The results suggest that with the considered alterations, R-290 systems within the current charge restrictions (<150g) can be developed and achieve the same heating performance with slight improvements on COP and therefore potentially UEF values. </p><p dir="ltr">The study also shows that all refrigerants considered could achieve the required heating capacity with a considerably downsized condenser and appropriately reduced subcooling. It highlighted the trends being consistent across refrigerants and implemented a final alternative refrigerant through the identified optimization steps to arrive at a new configuration without revalidating the trends, showing that newer optimal configurations could be identified with minimal time spent in the simulation environment. </p><p dir="ltr">Finally, the study explored alternative control possibilities by way of overheating the water beyond its required setpoint and enabling a control based mixing at the outlet to reduce the energized time of the device and leveraging the exceptional insulation capabilities for thermal storage.</p>
|
Page generated in 0.0327 seconds