Spelling suggestions: "subject:"raceme"" "subject:"racemic""
1 |
Resolution of racemates by high performance liquid chromatographyAkanya, J. N. January 1984 (has links)
No description available.
|
2 |
Predicting spontaneous racemate resolution using recent developments in crystal structure predictionKendrick, John, Gourlay, Matthew D., Neumann, M.A., Leusen, Frank J.J. January 2009 (has links)
No / A hybrid molecular mechanics and quantum mechanics solid state DFT method is used to re-rank the stability of racemic and enantiopure crystal structures of four molecules; 4-hydroxymethyl-2-oxazolidinone, 5-hydroxymethyl-2-oxazolidinone, 2-(4-hydroxyphenyl)-2,5,5-trimethylpyrrolidine-1-oxy and 2-(3-hydroxyphenyl)-2,5,5-trimethylpyrrolidine-1-oxy. Previous work using a force field based method to predict these crystal structures indicated that the lattice energy may be a suitable criterion for predicting whether a chiral molecule will resolve spontaneously on crystallisation. However, in some cases, the method had predicted an unrealistically high lattice energy for the structure corresponding to the experimentally observed one. The Hybrid DFT method successfully predicts those molecules which resolve spontaneously and furthermore predicts satisfactory lattice energies for all experimentally observed structures. Based on a comparison of the predicted lattice energies from the two methods it is concluded that the force fields used were not sufficiently accurate to predict spontaneous resolution with any confidence. However, the Hybrid DFT method is shown to be sufficiently accurate for making such predictions.
|
3 |
Benzaldehyde Lyase From Pseudomonas Fluorescens Biovar I Mediated Biotransformation For The Synthesis Of Chiral Alpha Hydroxy KetonesHosrik, Birsu Semra 01 January 2010 (has links) (PDF)
Optically active & / #945 / -hydroxy ketones are important subunits of many biologically active compounds and indispensable synthons for asymmetric synthesis. Benzaldehyde Lyase from Pseudomonas fluorescens Biovar I is a novel ThDP-dependent enzyme that catalyzes the synthesis of benzoin type chiral & / #945 / -hydroxy ketones starting from both benzaldehyde and racemic benzoin derivatives. Benzaldehyde Lyase is the first example of enzymes in the literature which leads to a chemical resolution of enantiomers of benzoin derivatives through a C-C bond cleavage reaction.
Chiral 2-hydroxypropiophenone derivatives are formed by benzaldehyde lyase (BAL), catalyzing C-C bond formation after a selective C-C bond cleavage of a benzoin derivative accepted as a substrate. The enzyme uses only the (R)-benzoin derivatives as substrate for the formation of (R)-HPP derivatives and it is highly stereoselective. Thus, in the presence of the acetaldehyde as the acceptor aldehyde, the C-C bond cleavage of the benzoin molecule followed by the carboligation of the acetaldehyde to yield chiral 2-hydroxy propiophenone derivatives.
Given the racemic benzoin to the enzyme as the substrate in the presence of acetaldehyde, both the racemic resolution of the substrate, revealing the unreacted (S)-Benzoin and the formation of the corresponding R-HPP occur.
|
4 |
Stereoselective Transport of Drugs Across the Blood-Brain Barrier (BBB) <i>In Vivo</i> and <i>In Vitro</i> : Pharmacokinetic and Pharmacodynamic Studies of the (<i>S</i>)- and (<i>R</i>)-Enantiomers of Different 5-HT<sub>1A</sub> Receptor Agonists and AntagonistsYan, Hongmei January 2002 (has links)
<p>Delivery of drugs to the brain requires passage across the blood-brain barrier (BBB). Both for drugs already on the market and for new drugs under development, it is important to know to what extent a drug enters the CNS. Many drugs used clinically are racemic mixtures, <i>i.e.</i> equal parts of the (<i>S</i>)- and (<i>R</i>)-enantiomers. </p><p>The present studies focus on the enantiomers and racemates of a number of 5-HT<sub>1A</sub> receptor agonists and antagonists (pindolol, propranolol, 8-OH-DPAT and other 8-substituted-2-(di-<i>n</i>-propylamino)tetralin derivatives) and BBB transport <i>in vitro</i> and distribution to the brain <i>in vivo.</i> Assays (HPLC-based) were set up or developed for determination of the racemates and the pure enantiomers (chiral column) of drugs in plasma and brain tissue. BBB transport was assessed <i>in vitro</i> using bovine brain endothelial cells cocultured with rat astrocytes. The physicochemical constants (log P, pKa) and plasma protein binding were determined. Pindolol, propranolol and several tetralines accumulated over time in brain tissue. For pindolol and propranolol, but not for most tetralins, the distribution to the brain was stereoselective, (<i>S</i>)>(<i>R</i>). Pretreatment with verapamil, an inhibitor of drug efflux <i>via</i> P-glycoprotein, differentially decreased the brain/plasma ratios of the enantiomers of pindolol and propranolol, indicating that verapamil may also inhibit an influx transport mechanism. <i>In vitro</i> results with racemic pindolol, propranolol and tetralins showed no differences in BBB transport between the enantiomers. A more rapid apical to basolateral transport (influx) <i>vs</i>. the basolateral to apical (efflux) transport of propranolol (not pindolol) and most tetralins <i>in vitro</i> indicated active transport across the BBB. </p><p>In conclusion, the combined <i>in vivo</i> and <i>in vitro</i> results are consistent with active transport of the studied compounds across the BBB rather than passive diffusion due to their lipophilicity. Some, but not all, chiral drugs are stereoselectively distributed to the brain. Stereoselective plasma protein binding or stereoselective transport across brain endothelial cells does not seem to explain the stereoselective accumulation of pindolol and propranolol. The stereochemical configuration of compounds contributes to their pharmacokinetic as well as their pharmacodynamic uniqueness. The characteristics of the enantiomers of chiral compounds need to be determined empirically rather than based on generalizations from structural or physicochemical information.</p>
|
5 |
Stereoselective Transport of Drugs Across the Blood-Brain Barrier (BBB) In Vivo and In Vitro : Pharmacokinetic and Pharmacodynamic Studies of the (S)- and (R)-Enantiomers of Different 5-HT1A Receptor Agonists and AntagonistsYan, Hongmei January 2002 (has links)
Delivery of drugs to the brain requires passage across the blood-brain barrier (BBB). Both for drugs already on the market and for new drugs under development, it is important to know to what extent a drug enters the CNS. Many drugs used clinically are racemic mixtures, i.e. equal parts of the (S)- and (R)-enantiomers. The present studies focus on the enantiomers and racemates of a number of 5-HT1A receptor agonists and antagonists (pindolol, propranolol, 8-OH-DPAT and other 8-substituted-2-(di-n-propylamino)tetralin derivatives) and BBB transport in vitro and distribution to the brain in vivo. Assays (HPLC-based) were set up or developed for determination of the racemates and the pure enantiomers (chiral column) of drugs in plasma and brain tissue. BBB transport was assessed in vitro using bovine brain endothelial cells cocultured with rat astrocytes. The physicochemical constants (log P, pKa) and plasma protein binding were determined. Pindolol, propranolol and several tetralines accumulated over time in brain tissue. For pindolol and propranolol, but not for most tetralins, the distribution to the brain was stereoselective, (S)>(R). Pretreatment with verapamil, an inhibitor of drug efflux via P-glycoprotein, differentially decreased the brain/plasma ratios of the enantiomers of pindolol and propranolol, indicating that verapamil may also inhibit an influx transport mechanism. In vitro results with racemic pindolol, propranolol and tetralins showed no differences in BBB transport between the enantiomers. A more rapid apical to basolateral transport (influx) vs. the basolateral to apical (efflux) transport of propranolol (not pindolol) and most tetralins in vitro indicated active transport across the BBB. In conclusion, the combined in vivo and in vitro results are consistent with active transport of the studied compounds across the BBB rather than passive diffusion due to their lipophilicity. Some, but not all, chiral drugs are stereoselectively distributed to the brain. Stereoselective plasma protein binding or stereoselective transport across brain endothelial cells does not seem to explain the stereoselective accumulation of pindolol and propranolol. The stereochemical configuration of compounds contributes to their pharmacokinetic as well as their pharmacodynamic uniqueness. The characteristics of the enantiomers of chiral compounds need to be determined empirically rather than based on generalizations from structural or physicochemical information.
|
6 |
Stereochemical And Synthetic InvestigationsVenu, Lingampally 11 1900 (has links) (PDF)
PART I
RESOLUTION AND DESYMMETRISATION
Chapter I. ‘A Novel Racemate Resolution’. This describes a novel resolution strategy as applied to racemic α-amino acids in the solid state. The strategy is based on the possibility that second order asymmetric transformations (SOAT) would be more likely in the case of achiral molecules that form chiral crystals (i.e. a non- centrosymmetric space group).1 In such cases, a fundamental requirement of SOAT – that the molecules racemise in solution prior to crystallization – is obviated. Furthermore, the resulting enantiomerically-enriched crystals may be employed to effect a solid-state kinetic resolution of a different racemate (composed of chiral molecules). This strategy was explored with crystalline succinic anhydride (1, Scheme 1), which not only exists in a non-centrosymmetric space group (P212121) but also possesses reactive functionality to effect the resolution step.2
Thus, a finely-ground mixture of 1 (0.5 eqiv.) and a racemic α-amino acid (2, 1.0 eqiv.) was heated at ~ 70 oC over ~ 5 h without solvent. The resulting N-succinoyl derivative (3) was separated from the unreacted 2, which was found to possess significant levels of optical purity (typically ~ 70%). The strategy was applied to several common α-amino acids, the results being summarized in Table 1. These results, apart from establishing ‘proof-of-concept’ and the viability of the resolution strategy, indicate that crystalline succinic anhydride (1) is enantiomerically enriched as originally hypothesized.
Chapter II. ‘Enantiospecific Alkylation and Desymmetrisations’. This deals with two enolate-mediated strategies of asymmetric synthesis: one describes approaches towards the alkylation of the stereogenic centre in benzoin without loss of stereogenicity (Section A), and the other the desymmetrisation of a meso tartarate derivative with a chiral base catalyst (Section B).
Section A. This describes exploratory studies aimed at achieving the enantiospecific α-alkylation of optically-active benzoin (4, Scheme 2) via its enolate anion 5. The strategy depends on the possibility that 5 would exist in atropisomeric forms, because of steric interactions between the vicinal phenyl groups. (This is indicated in the crystal structure of the analogous enediol carbonate derived from racemic 4.)3 In such a case, remarkably, 5 would be chiral, despite its planar enediolate core! Thus, possibly, the configurational chirality in 4 (by virtue of the C2 stereogenic centre) would be transformed to the helical chirality in 5 (by virtue of the atropisomerism). Furthermore, enantioface-selective alkylation of 5 with achiral alkylating agents would, in principle, be possible.
Preliminary studies were then directed towards establishing that controlled deprotonation of optically-active 4, followed by the protonation of the resulting enediolate 5, leads back to the original 4. (+)-Benzoin (4) was prepared via resolution,4 and deprotonated with KH in THF.5 The resulting enediolate (5) was neutralized with acetic acid at -70 oC/THF to recover 4, but with insignificant levels of optical activity (e.e. ~ 12%). The results possibly indicate that ortho-substituted benzoin analogs may show greater retention of chirality upon deprotonation, as the racemisation of the enediolate atropisomers would be suppressed by steric hindrance between the aryl moities.
Section B. This describes studies directed towards the catalytic desymmetrisation of meso dimethyl tartarate (6, Scheme 3). The strategy involves the formation of the acetonide derivative 7 and its regioselective α-deprotonation with a chiral base catalyst. The enantioface-selective protonation of the resulting enolate (8) would lead to the chiral analog 9. The overall sequence offers a possible alternative to catalytic deracemisation, which is normally unviable for thermodynamic reasons.6
The above strategy hinges on the meso derivative 7 being thermodynamically less stable than the enantiomeric 9, which would thus be favoured at equilibrium. In fact, this is likely as the eclipsing interactions between the syn ester moieties in 7 would be relieved in 9, in which the ester moieties are anti.
However, deprotonation of 7 at the other α position would compete to varying extents, depending on the selectivity induced by the chiral base. At total equilibrium, the sequence would occur via deprotonation at both α sites at equal rates, and no net optical induction would be observed. (This is a thermodynamic requirement via the principle of microscopic reversibility.) Thus, the success of the above strategy depends on stalling the deprotonation-protonation sequence at a quasi-equilibrium stage involving only one of the enantiomers (9).6
The other operational requirement was the compatibility of the pKa’s of 7 and the chiral base employed: too low a pKa of the base would result in inefficient deprotonation and slow overall rate, but a high pKa would generate a large quantity of the enolate 8 at equilibrium. After due consideration, the lithiated chiral fluorene derivative 11 (pKa ~ 22) was chosen as the chiral base catalyst [11 was prepared from fluorene (10) as indicated].
Treating 7 with 0.2 equivalent of 10 in THF at -65 oC over 2 h, led to the formation of a mixture of 7 and 9 in a 45:55 ratio (isolated in 85% total yield). Chromatographic separation of the mixture led to the isolation of pure (+)-9, which was identified spectrally; it was found to possess [α]D24 = +21.84 (c 1.0, CHCl3), corresponding to e.e. = 64%. (This implies the indicated (4S, 5S) configuration for 1, 3-dioxolane 9, as previously reported.)7 These results, despite the moderate e.e. levels obtained, indicate the viability of the above catalytic desymmetrisation strategy, bearing in mind the mechanistic ambiguities mentioned above.
PART II
SYNTHESES OF ALDEHYDES AND AMINO ACIDS
Chapter III. ‘An Asymmetric Synthesis of Aldehydes’. This describes an oxazoline approach to the synthesis of chiral aldehydes. The oxazoline methodology for the synthesis of homochiral α-alkylated carboxylic acids is well known,8 and it was of interest to adapt this to the synthesis of the corresponding aldehydes. Essentially, it was envisaged that the reaction sequence could be diverted towards aldehydes via reduction of the alkylated oxazoline intermediate (Scheme 4).
Thus, 2-ethyl-4(S)-methoxymethyl-5(R)-phenyl-1,3-oxazoline (12) was deprotonated with lithium diisopropylamide in THF, and the resulting anion treated with various alkyl halides, in the reported manner.8 The resulting alkylated product (13) was N-methylated with MeI in refluxing MeNO2 over 6 h, to obtain the quaternary salt 14. This was reduced with NaBH4 in MeOH to obtain the expected N- methyl oxazolidine 15, which was hydrolyzed in refluxing aqueous oxalic acid to the free aldehydes 16. These were isolated in moderate yields and e.e. values as shown.
Chapter IV. ‘A Darzens Route to α-Amino Acids’. This describes a novel route to α-amino acids, based on the classical Darzens glycidic ester synthesis.9 In this approach (Scheme 5), the glycidic ester (19) was prepared from benzaldehyde (17) and t-butyl bromoformate (18), with KOH in THF as base, and tetrabutylammonium bromide (TBAB) as phase transfer catalyst.9b The oxirane ring in 19 was cleaved via nucleophilic attack with an amine (20), to furnish the two regio-isomeric hydroxy- amino acids (21) and (22). Generally, the β-hydroxy-α-amino acid product (21) predominated over the α-hydroxy-β-amino acid product (22), the two being separated chromatographically. The hydroxyl group in 21 was reductively cleaved via its xanthate derivative (23), by refluxing it in toluene with AIBN (10 mol %) over 4 h. The resulting α-amino acid derivatives (24) were obtained in moderate yields (< 60
%) upon chromatographic purification. (The β-amino analog 22, would lead to the corresponding β-amino acid, but this was not pursued further.)
This strategy lends itself to creating structural diversity at the β-centre in the α- amino acid, drawing upon the wide scope of the well-established Darzens condensation reaction. Also, the introduction of the amino moiety is facilitated by the enhanced reactivity at the α-centre of the oxirane ring in the glycidic ester (19), presumably for both electronic and steric reasons.
|
7 |
Capsules hélicoïdales auto-organisées par repliement d’oligoamides aromatiques pour la reconnaissance moléculaire / Helical capsules based on aromatic oligoamide foldamers for molecular recognitionLautrette, Guillaume 27 September 2013 (has links)
La reconnaissance moléculaire constitue l’une des questions fondamentales les plus discutées dans le domaine de la chimie supramoléculaire. Cette thèse présente la conception, la synthèse et l’étude des propriétés de capsules hélicoïdales auto-organisées par repliement d’oligoamides aromatiques. Ces récepteurs sont constitués d’une chaîne oligomérique se repliant en hélice et comprenant une séquence d’unités codant pour des diamètres différents. Le repliement de l’oligomère donne naissance à une cavité pouvant accueillir des molécules invitées. La grande modularité des séquences, permettant une évolution contrôlée des structures des foldamères, donne lieu à la reconnaissance sélective et anticipée de substrats d’intérêts biologiques. Le phénomène d’encapsulation a été mis en évidence en solution par spectroscopie RMN et CD, et dans le solide par diffraction des rayons X. / Molecular recognition is one of the major challenges of supramolecular chemistry. Here, we present the design, synthesis and study of helical capsules properties self-organised by aromatic oligoamide folding. These receptors consist of oligomeric chains that fold into a helical conformation and comprise of a sequence of units which code for different diameters. Oligomeric folding defines a cavity which can recognize guests. The great modularity of the sequences has allowed a controlled evolution of foldamer structure resulting in the selective and predict recognition of biological substrates. The phenomenon of encapsulation was demonstrated in solution by NMR and CD spectroscopy and in the solid state by X-ray diffraction.
|
Page generated in 0.0699 seconds