• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball

Kurepa, Alexandra 08 1900 (has links)
In this paper we consider a radially symmetric nonlinear Dirichlet problem in a ball, where the nonlinearity is "superlinear" and "superlinear with jumping."
2

Simetria radial de soluções positivas de sistemas elípticos cooperativos / Radial symmetry of positive solutions of cooperative elliptic systems

Schoeffel, Janaina 27 February 2012 (has links)
Neste trabalho estudamos a questão de simetria de soluções positivas de equações e sistemas de equações diferenciais parciais. Descrevemos em detalhe a demonstração de dois resultados sobre simetria radial, um para equações em domínios limitados e outro para sistemas de equações no espaço todo. Ambas as demonstrações baseiam-se no método dos moving planes. Em seguida aplicamos um dos resultados mencionados acima para a equação de Choquard. / In this work we study the question of symmetry for positive solutions of equations and systems of partial differential equations. We describe in detail the proof of two results on radial symmetry, one for equations in bounded domains and the other for systems of equations in the whole space. Both proofs are based on the method of moving planes. We apply one of the results mentioned above for the Choquards equation.
3

Simetria radial de soluções positivas de sistemas elípticos cooperativos / Radial symmetry of positive solutions of cooperative elliptic systems

Janaina Schoeffel 27 February 2012 (has links)
Neste trabalho estudamos a questão de simetria de soluções positivas de equações e sistemas de equações diferenciais parciais. Descrevemos em detalhe a demonstração de dois resultados sobre simetria radial, um para equações em domínios limitados e outro para sistemas de equações no espaço todo. Ambas as demonstrações baseiam-se no método dos moving planes. Em seguida aplicamos um dos resultados mencionados acima para a equação de Choquard. / In this work we study the question of symmetry for positive solutions of equations and systems of partial differential equations. We describe in detail the proof of two results on radial symmetry, one for equations in bounded domains and the other for systems of equations in the whole space. Both proofs are based on the method of moving planes. We apply one of the results mentioned above for the Choquards equation.
4

Problemas elípticos semilineares com potenciais ilimitados e/ou com decaimento radial / Elliptics semilineares problems with unbounded potential and/or with radial potential

Oliveira, Luciano Cordeiro de 26 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:45:33Z (GMT). No. of bitstreams: 1 texto completo.pdf: 346839 bytes, checksum: cab5395001fcc113256f79ba4e365ce8 (MD5) Previous issue date: 2010-02-26 / In this work we study two class of elliptic problems modeled on unbounded domains. The study of these class of problems is relevant not only in applied mathematics, but also in nonlinear analysis. In the these problems, since the domain is unbounded, there is a lack of compactness of the Sobolev embedding, bringing some difficults to show the convergence of the Palais-Smale sequence. To solve this difficulty we work in a subspace of the usual Sobolev space where we can recover some compactness result. The solutions are obtained by Lagrange multiplier. We give another proof of results in [6] due to Wei-Yue Ding and Wei-Ming Ni, who used to solve The Mountain Pass Theorem and a priori estimates. The results of our study are due to Habao Su, Zhi-Qiang Wang and Michel Willem. / Neste trabalho, estudamos duas classes de problemas elípticos modeladas em domínios ilimitados. O estudo dessas classes de problemas e relevante não só no campo da matemática aplicada, mas também na área de análise não linear. Nesses problemas, como o domínio é ilimitado, há a perda de compacidade da “imersão" de Sobolev, dificultando a convergência da sequência de “soluções" (sequência de Palais Smale). Essa dificuldade é contornada trabalhando num subespaço do espaço de Sobolev usual onde se recupera a compacidade utilizando resultados de imersão. As soluções são obtidas via multiplicadores de Lagrange. Apresentamos uma outra maneira de resolver um problema em [6], devido a Wei-Yue Ding e Wei-Ming Ni, que utilizaram na solução o Teorema do Passo da Montanha e estimativas a priori. Os resultados de nosso estudo são devidos a Habao Su, Zhi-Qiang Wang e Michel Willem.
5

Medidas de assimetria bivariada e dependência local. / Measures of bivariate asymmetry and local dependence.

Ferreira, Flavio Henn 03 October 2008 (has links)
Esta tese trata de dois assuntos importantes na teoria de risco: o fenômeno da dependência local e a identificação e mensuração de assimetrias apresentadas pelos dados. A primeira parte trata de dependência local, sendo abordadas algumas medidas já analisadas na literatura. Versões locais dos coeficientes de Kendall e Spearman , baseadas na distribuição condicional dos dados, são propostas. São apresentadas algumas propriedades dessas medidas e a aplicação das mesmas a algumas cópulas. Na segunda parte são apresentados resultados sobre cópulas bivariadas que são as menos associativas e menos bi-simétricas segundo o critério de máxima distância modular. A última parte trata da não-permutabilidade e assimetria radial dos dados. Uma medida de não-permutabilidade baseada nos coeficientes de correlação condicional é proposta e aplicada a algumas distribuições. No final, o conceito de quantil bivariado é aplicado nas definições de medidas para avaliar o grau de permutabilidade e de simetria radial presentes na estrutura de dependência dos dados e de testes de hipóteses para verificar se a cópula subjacente aos dados é permutável ou radialmente simétrica. / In this thesis two important fields in risk theory are studied: the local dependence phenomenon and the identification and measuring of asymmetries contained in data. The first part deals with local dependence: some measures already studied in the literature are presented and discussed, and local versions of the coefficients Kendall and Spearman , based on the conditional distribution of data, are proposed. Properties of these measures and some examples concerning its application are treated. In the second part are presented some results about bivariate copulas which are the least associative and the least bi-symmetric according to the maximum modular distance. The last part analyses the nonexchangeability and the radial asymmetry of data. A measure of nonexchangeability based on the conditional correlation coefficient is proposed and applied to some distribution functions. At the end, the concept of bivariate quantile is applied in the definitions of measures for evaluating the degree of exchangeability and radial symmetry present in data and of hypothesis tests proposed for verifying whether the underlying copula is exchangeable or radially symmetric.
6

Medidas de assimetria bivariada e dependência local. / Measures of bivariate asymmetry and local dependence.

Flavio Henn Ferreira 03 October 2008 (has links)
Esta tese trata de dois assuntos importantes na teoria de risco: o fenômeno da dependência local e a identificação e mensuração de assimetrias apresentadas pelos dados. A primeira parte trata de dependência local, sendo abordadas algumas medidas já analisadas na literatura. Versões locais dos coeficientes de Kendall e Spearman , baseadas na distribuição condicional dos dados, são propostas. São apresentadas algumas propriedades dessas medidas e a aplicação das mesmas a algumas cópulas. Na segunda parte são apresentados resultados sobre cópulas bivariadas que são as menos associativas e menos bi-simétricas segundo o critério de máxima distância modular. A última parte trata da não-permutabilidade e assimetria radial dos dados. Uma medida de não-permutabilidade baseada nos coeficientes de correlação condicional é proposta e aplicada a algumas distribuições. No final, o conceito de quantil bivariado é aplicado nas definições de medidas para avaliar o grau de permutabilidade e de simetria radial presentes na estrutura de dependência dos dados e de testes de hipóteses para verificar se a cópula subjacente aos dados é permutável ou radialmente simétrica. / In this thesis two important fields in risk theory are studied: the local dependence phenomenon and the identification and measuring of asymmetries contained in data. The first part deals with local dependence: some measures already studied in the literature are presented and discussed, and local versions of the coefficients Kendall and Spearman , based on the conditional distribution of data, are proposed. Properties of these measures and some examples concerning its application are treated. In the second part are presented some results about bivariate copulas which are the least associative and the least bi-symmetric according to the maximum modular distance. The last part analyses the nonexchangeability and the radial asymmetry of data. A measure of nonexchangeability based on the conditional correlation coefficient is proposed and applied to some distribution functions. At the end, the concept of bivariate quantile is applied in the definitions of measures for evaluating the degree of exchangeability and radial symmetry present in data and of hypothesis tests proposed for verifying whether the underlying copula is exchangeable or radially symmetric.
7

Rozpoznávání vzorů / Pattern recognition

Pelc, Matěj January 2008 (has links)
This paper proposes robust algorithm for detection of traffic signs in well light conditional. The algorithm uses colour based segmentation method for finding red traffic signs. Fast radial symmetry method FRS is used for identification of constituent shapes. Traffic signs are divided into four classes on the basis of the method.
8

Biometrie s využitím snímků duhovky / Biometry based on iris images

Tobiášová, Nela January 2014 (has links)
The biometric techniques are well known and widespread nowadays. In this context biometry means automated person recognition using anatomic features. This work uses the iris as the anatomic feature. Iris recognition is taken as the most promising technique of all because of its non-invasiveness and low error rate. The inventor of iris recognition is John G. Daugman. His work underlies almost all current public works of this technology. This final thesis is concerned with biometry based on iris images. The principles of biometric methods based on iris images are described in the first part. The first practical part of this work is aimed at the proposal and realization of two methods which localize the iris inner boundary. The third part presents the proposal and realization of iris image processing in order to classifying persons. The last chapter is focus on evaluation of experimental results and there are also compared our results with several well-known methods.
9

Ελλειπτικές εξισώσεις με υπερκρίσιμο εκθέτη σε συμπαγείς πολλαπλότητες με σύνορο

Λαμπρόπουλος, Νίκος 30 July 2007 (has links)
Η παρούσα διατριβή ερευνητικά εντάσσεται στην περιοχή της Μη Γραμμικής Ανάλυσης και ειδικότερα στην επίλυση Μη Γραμμικών Ελλειπτικών Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.) με υπερκρίσιμο εκθέτη. Η μη γραμμικότητα δεν επιτρέπει την επίλυση των εξισώσεων αυτών χρησιμοποιώντας τις συμπαγείς εμφυτεύσεις. Αξιοποιώντας τις ιδιότητες συμμετρίας που παρουσιάζει η πολλαπλότητα, αφενός παρακάμπτουμε το εμπόδιο αυτό και αφετέρου επιτυγχάνουμε να επιλύσουμε εξισώσεις αυτού του τύπου με υπερκρίσιμο εκθέτη. Στο πρώτο μέρος της Διατριβής υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο στον στερεό τόρο, μελετάμε το φαινόμενο της συμπύκνωσης και επιλύουμε τα προβλήματα (P1) και (P2). Στο δεύτερο μέρος υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο σε μια λεία, συμπαγή, n-διάστατη, n\geq 3, πολλαπλότητα Riemann (M,g) με σύνορο, που είναι αναλλοίωτη από τη δράση μιας οποιασδήποτε συμπαγούς υποομάδας G της ομάδας των ισομετριών Is(M,g) της Μ και της οποίας όλες οι G-τροχιές έχουν άπειρο πληθάριθμο και κάνουμε μια σύντομη παρουσίαση των λύσεων των προβλημάτων (P3) και (P4). / The present Thesis is incorporated in the research area of Nonlinear Analysis, especially solvability of Nonlinear Elliptic PDE’s with supercritical exponent.The nonlinear nature of the equations makes it impossible to be solved by means of compact imbeddings. Taking advantage of the symmetry properties of the manifold we overcome the obstacle as well as we succeed in solving equations of this type possessing supercritical exponent. In the first part of the Thesis we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on the solid torus, we study the phenomenon of concentration and solve problems (P1) and (P2).In the second part we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on a smooth, compact, n−dimensional Riemannian manifold (M, g), n _ 3, with boundary, which is invariant under the action of a subgroup G of the isometry group Is(M, g) of M, the orbits of which have infinity cardinality. We also present brief solutions of problems (P3) and (P4).

Page generated in 0.0419 seconds