1 |
Sustainable scheduling policies for radio access networks based on LTE technologyComşa, Ioan-Sorin January 2014 (has links)
In the LTE access networks, the Radio Resource Management (RRM) is one of the most important modules which is responsible for handling the overall management of radio resources. The packet scheduler is a particular sub-module which assigns the existing radio resources to each user in order to deliver the requested services in the most efficient manner. Data packets are scheduled dynamically at every Transmission Time Interval (TTI), a time window used to take the user’s requests and to respond them accordingly. The scheduling procedure is conducted by using scheduling rules which select different users to be scheduled at each TTI based on some priority metrics. Various scheduling rules exist and they behave differently by balancing the scheduler performance in the direction imposed by one of the following objectives: increasing the system throughput, maintaining the user fairness, respecting the Guaranteed Bit Rate (GBR), Head of Line (HoL) packet delay, packet loss rate and queue stability requirements. Most of the static scheduling rules follow the sequential multi-objective optimization in the sense that when the first targeted objective is satisfied, then other objectives can be prioritized. When the targeted scheduling objective(s) can be satisfied at each TTI, the LTE scheduler is considered to be optimal or feasible. So, the scheduling performance depends on the exploited rule being focused on particular objectives. This study aims to increase the percentage of feasible TTIs for a given downlink transmission by applying a mixture of scheduling rules instead of using one discipline adopted across the entire scheduling session. Two types of optimization problems are proposed in this sense: Dynamic Scheduling Rule based Sequential Multi-Objective Optimization (DSR-SMOO) when the applied scheduling rules address the same objective and Dynamic Scheduling Rule based Concurrent Multi-Objective Optimization (DSR-CMOO) if the pool of rules addresses different scheduling objectives. The best way of solving such complex optimization problems is to adapt and to refine scheduling policies which are able to call different rules at each TTI based on the best matching scheduler conditions (states). The idea is to develop a set of non-linear functions which maps the scheduler state at each TTI in optimal distribution probabilities of selecting the best scheduling rule. Due to the multi-dimensional and continuous characteristics of the scheduler state space, the scheduling functions should be approximated. Moreover, the function approximations are learned through the interaction with the RRM environment. The Reinforcement Learning (RL) algorithms are used in this sense in order to evaluate and to refine the scheduling policies for the considered DSR-SMOO/CMOO optimization problems. The neural networks are used to train the non-linear mapping functions based on the interaction among the intelligent controller, the LTE packet scheduler and the RRM environment. In order to enhance the convergence in the feasible state and to reduce the scheduler state space dimension, meta-heuristic approaches are used for the channel statement aggregation. Simulation results show that the proposed aggregation scheme is able to outperform other heuristic methods. When the aggregation scheme of the channel statements is exploited, the proposed DSR-SMOO/CMOO problems focusing on different objectives which are solved by using various RL approaches are able to: increase the mean percentage of feasible TTIs, minimize the number of TTIs when the RL approaches punish the actions taken TTI-by-TTI, and minimize the variation of the performance indicators when different simulations are launched in parallel. This way, the obtained scheduling policies being focused on the multi-objective criteria are sustainable. Keywords: LTE, packet scheduling, scheduling rules, multi-objective optimization, reinforcement learning, channel, aggregation, scheduling policies, sustainable.
|
2 |
Evaluation of power consumption and trade-offs in 5G mobile communications networksAlhumaima, Raad January 2017 (has links)
In this thesis, components and parameters based power models (PMs) are produced to measure the power consumption (PC) of cloud radio access network (CRAN) architecture. In components PM, the power figure of each component within C-RAN is evaluated. After, this model is parametrised such that the computation complexity of each component is converted to a straightforward, but accurate method, called parameterised PM. This model compares cooling and total PC of traditional LTE architecture with C-RAN. This comparison considered different parameters such as, utilised bandwidth, number of antenna, base band units (BBUs) and remote radio heads (RRHs). This model draws about 33% reduction in power. Next, this PC model is updated to serve and exhibit the cost of integrating software defined networks (SDNs) with C-RAN. Alongside, modelling the power cost of the control plane units in the core network (CN), such as serving gateway (SGW), packet gateway (PGW) and mobility management entity (MME). Although there is power cost, the proposed model shows the directions to mitigate it. Consequently, a simplified PM is proposed for virtualisation based C-RAN. In this model, the power cost of server virtualisation by hosting several virtual machines (VMs) is shown, in a time and cost effective way. The total reduction in the PC was about 75%, due to short-cutting the number of active servers in the network. Alongside, the latency cost due to such technique is modelled. Finally, to enable efficient virtualisation technology, live migrating the VMs amongst the servers is vital. However, this advantageous situation is concurrent with VM's migration time and power cost. Therefore, a model is proposed to calculate the power cost of VM's live migration, and shows the effect of such decision upon the total PC of the network/C-RAN. The proposed work converts the complexity of other proposed PMs, to a simplified and costless method. Concurrently, the time cost is added to the imposed virtualisation's time cost to formulate the total delay expected prior to these techniques' execution.
|
3 |
Towards a programmable and virtualized mobile radio access network architectureFoukas, Xenofon January 2018 (has links)
Emerging 5G mobile networks are envisioned to become multi-service environments, enabling the dynamic deployment of services with a diverse set of performance requirements, accommodating the needs of mobile network operators, verticals and over-the-top service providers. The Radio Access Network (RAN) part of mobile networks is expected to play a very significant role towards this evolution. Unfortunately, such a vision cannot be efficiently supported by the conventional RAN architecture, which adopts a fixed and rigid design. For the network to evolve, flexibility in the creation, management and control of the RAN components is of paramount importance. The key elements that can allow us to attain this flexibility are the programmability and the virtualization of the network functions. While in the case of the mobile core, these issues have been extensively studied due to the advent of technologies like Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) and the similarities that the core shares with other wired networks like data centers, research in the domain of the RAN is still in its infancy. The contributions made in this thesis significantly advance the state of the art in the domain of RAN programmability and virtualization in three dimensions. First, we design and implement a software-defined RAN (SD-RAN) platform called FlexRAN, that provides a flexible control plane designed with support for real-time RAN control applications, flexibility to realize various degrees of coordination among RAN infrastructure entities, and programmability to adapt control over time and easier evolution to the future following SDN/NFV principles. Second, we leverage the capabilities of the FlexRAN platform to design and implement Orion, which is a novel RAN slicing system that enables the dynamic on-the-fly virtualization of base stations, the flexible customization of slices to meet their respective service needs and which can be used in an end-to-end network slicing setting. Third, we focus on the use case of multi-tenancy in a neutral-host indoors small-cell environment, where we design Iris, a system that builds on the capabilities of FlexRAN and Orion and introduces a dynamic pricing mechanism for the efficient and flexible allocation of shared spectrum to the tenants. A number of additional use cases that highlight the benefits of the developed systems are also presented. The lessons learned through this research are summarized and a discussion is made on interesting topics for future work in this domain. The prototype systems presented in this thesis have been made publicly available and are being used by various research groups worldwide in the context of 5G research.
|
4 |
Energy efficient transmitter design with compact antenna for future wireless communication systemsZhou, Lin January 2018 (has links)
This thesis explores a novel technique for transceiver design in future wireless systems, which is cloud radio access networks (CRANs) with single radio frequency (RF) chain antennas at each remote radio head (RRH). This thesis seeks to make three contributions. Firstly, it proposes a novel algorithm to solve the oscillatory/unstable behaviour of electronically steerable parasitic array radiators (ESPAR) when it provides multi-antenna functionality with a single RF chain. This thesis formulates an optimization problem and derives closed-form expressions when calculating the configuration of an ESPAR antenna (EA) for arbitrary signals transmission. This results in simplified processing at the transmitter. The results illustrate that the EA transmitter, when utilizing novel closed-form expressions, shows significant improvement over the performance of the EA transmitter without any pre-processing. It performs at nearly the same symbol error rate (SER) as standard multiple antenna systems. Secondly, this thesis illustrates how a practical peak power constraint can be put into an EA transceiver design. In an EA, all the antenna elements are fed centrally by a single power amplifier. This makes it more probable that during use, the power amplifier reaches maximum power during transmission. Considering limited power availability, this thesis proposes a new algorithm to achieve stable signal transmission. Thirdly, this thesis shows that an energy efficiency (EE) optimization problem can be formulated and solved in CRANs that deploy single RF chain antennas at RRHs. The closed-form expressions of the precoder and power allocation schemes to transmit desired signals are obtained to maximise EE for both single-user and multi-user systems. The results show that the CRANs with single RF chain antennas provide superior EE performance compared to the standard multiple antenna based systems.
|
5 |
Predictive Radio Access Networks for Vehicular Content DeliveryAbou-zeid, Hatem 01 May 2014 (has links)
An unprecedented era of “connected vehicles” is becoming an imminent reality. This
is driven by advances in vehicular communications, and the development of in-vehicle
telematics systems supporting a plethora of applications. The diversity and multitude
of such developments will, however, introduce excessive congestion across wireless
infrastructure, compelling operators to expand their networks. An alternative to
network expansions is to develop more efficient content delivery paradigms. In particular,
alleviating Radio Access Network (RAN) congestion is important to operators
as it postpones costly investments in radio equipment installations and new spectrum.
Efficient RAN frameworks are therefore paramount to expediting this realm
of vehicular connectivity.
Fortunately, the predictability of human mobility patterns, particularly that of vehicles
traversing road networks, offers unique opportunities to pursue proactive RAN
transmission schemes. Knowing the routes vehicles are going to traverse enables the
network to forecast spatio-temporal demands and predict service outages that specific
users may face. This can be accomplished by coupling the mobility trajectories with
network coverage maps to provide estimates of the future rates users will encounter
along a trip.
In this thesis, we investigate how this valuable contextual information can enable RANs to improve both service quality and operational efficiency. We develop a collection
of methods that leverage mobility predictions to jointly optimize 1) long-term
wireless resource allocation, 2) adaptive video streaming delivery, and 3) energy efficiency in RANs. Extensive simulation results indicate that our approaches provide
significant user experience gains in addition to large energy savings. We emphasize
the applicability of such predictive RAN mechanisms to video streaming delivery, as
it is the predominant source of traffic in mobile networks, with projections of further
growth. Although we focus on exploiting mobility information at the radio access
level, our framework is a direction towards pursuing a predictive end-to-end content
delivery architecture. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2014-04-30 06:15:34.31
|
6 |
Internet Protocol based Mobile Radio Access Network Architecture for Remote Service AreasShahzad, Hamid, Jain, Nishant January 2007 (has links)
When it comes to their Radio Access Network (RAN) infrastructure, no two Mobile Operators, serving remote service areas, are alike. Despite situations and technologies being diverse, a well designed optimized RAN solution must adapt itself to the existing networking technologies, both with regard to legacy core networks and modern telecommunication networks in order to produce the best network which is possible subject to many constraints. There is a misconception in technical circles that an optimized internet protocol (IP) enabled RAN architecture is more theoretical than practical. On the contrary, the aforesaid is highly dependent on the technology used. Packet optimized IP- GSM Radio Access Network (GRAN) architecture is proposed in this thesis, it uses Internet Protocol (IP) rather than proprietary protocols for communication between Base Transceiver Stations (BTS), Base Station Controllers (BSC), and the Network Switching Subsystem (NSS). This architecture must deliver carrier-grade mobility, scalability, and reliability; while being optimized for efficient roaming, routing and backhauling from remote service areas. In a geographic arena that spans across the globe, classical circuit-switched networks are not cost efficient due to their integrated call control (signaling) and switching architecture. A solution to this may be soft-switching which separates the call control (Media Gateway Controller (MGC)) and switching (Media Gateway (MG)) into separate nodes. This methodology would fundamentally change the way circuit-switched services, such as traditional voice telephony, are handled. For a service provider this enables a much more efficient network, because it allows optimized equipment location for voice termination into other carrier networks. Co-location of media gateways with satellite ground stations enables local termination to the public switched telephone network (PSTN), thus offloading a great deal of the traffic from the backhaul transmission network of the mobile operator. This thesis adopts soft-switching as part of the call routing processes. The thesis considers the problem of transporting voice and signaling from-to the remote service areas, efficient routing and backhaul to the location of most suitable operator’s point of presence. The thesis explores an alternative which uses a packet switched backbone (e.g. IP based) to transport the media as close (geographically) to the dialed party as possible before terminating it at the PSTN network, thus achieving optimal routing of voice and signaling. Considering the aforesaid, the thesis describes a detailed network architecture and an operational system prototype for maritime GSM network deployment, as a befitting and challenging example of remote service area. / När det gäller deras Radio access nät, finns det inte två Mobiloperatörer, som betjänar avlägsna områden, som är lika. Trots olika omständigheter och teknologier, ett väl designat optimerat RAN måste anpassa sig till den existerande nätverks teknologin, både med avseende på äldre befintlig teknologi och på moderna telekomnät, för att kunna skapa bästa möjliga nätverk givet många begränsningar. Det är en missuppfattning i tekniska kretsar att en optimerad IP anpassad RAN arkitektur är mer teoretisk än praktisk. Å andra sidan så är det ovan sagda väldigt beroende på vilken teknologi som har använts. En paket optimerad IP-GSM Radio Access Nätverks (IPGRAN) arkitektur är föreslagen i denna masters uppsats, den baseras på Internet Protokollet (IP) snarare än något egenutvecklat proprietärt protokol för komunikation mellan Basstation (BTS), Basstationscontroller (BSC), och nätets switchade subsystem (NSS). Denna arkitektur måste leverera carrier-grade (operatörs klassad) mobilitet, skalbarhet och tillgänglighet och samtidigt vara optimerat för effektiv roaming, routing och anslutning från avlägsna områden. På ett geografiskt område som sträcker sig runt hela jordklotet är inte klassiska kretskopplade nätverk kostnadseffektiva beroende på deras integrerade signallerings och samtals arkitektur. En bättre arkitektur kan vara en sk “softswitch” lösning som separerar samtalet i en (Media Gateway Controller (MGC)) och signaleringen (Media Gateway (MG)) i separata noder. Denna metod skulle på ett fundamentalt vis ändra det sätt på vilket traditionella kretskopplade tjänster som traditionell telefoni hanteras. För en tjänsteleverantör möjliggör detta ett mycket effektivare nätverk då det möjliggör optimerad utplacering av utrustning för terminering av rösttrafik in i andra operatörers nät. Samlokalisering av media gateways (MG:s) med jordstationer för satellitkommunikation möjliggör lokal anslutning till det allmänna telenätet (PSTN), vilket kraftigt minskar den trafik som behöver transporteras genom operatörens stomnät. Denna mastersuppsats behandlar “softswitching” som en del av metoden att växla och transportera samtalstrafik. Uppsatsen behandlar problemet med att skicka samtalstrafik och signalering från avlägsna områden, effektiv routing och transport av trafiken till den operatör som har den närmaste(alt. mest optimala) anslutningspunkten. Uppsatsen undersöker ett alternativ som använder ett paketförmedlat (IP baserat) transportsätt för att transportera trafiken geografiskt sett så nära den uppringda parten som möjligt innan den termineras i det allmänna telenätet (PSTN) varvid man uppnår optimal växling (alt. routing) av rösttrafik och signalering. I beaktande av ovanstående beskriver uppsatsen en detaljerad nätverksarkitektur och en funktionsduglig systemprototyp för ett maritimt GSM nät som ett utmanande exempel på ett avlägset beläget nät.
|
7 |
Increasing energy efficiency of O-RAN through utilization of xAppsBorg, Fredrik January 2023 (has links)
As 5G becomes more established and faces widespread roll-out, energy consumption of radio access networks around the globe will increase. Since the high-frequency radio waves used in 5G communication has a shorter effective range compared to the waves used in previous generations, 5G networks will require a higher number of radio units to compensate for their reduced range. Since the transmission of radio waves is a costly procedure in terms of energy consumption, this further increases the relevancy of radio equipment when considering solutions for increasing radio access networks' energy efficiency. This thesis has therefore provided a possible solution for increasing the energy efficiency of an O-RAN compliant radio access network by decreasing the energy consumption of its radio units. If a network's radio units are capable of entering a low-power sleep mode whenever they are left idle, i.e. not handling any traffic, the energy efficiency of a network can thus be increased by forcing its radio units to enter sleep mode as often as possible. This can be done by offloading traffic from radio units with little traffic onto other nearby radio units. The handovers required to perform such offloading, however, need to be predicted on the fly somewhere within the network. The solution proposed within this thesis therefore utilizes a component indigenous to the O-RAN architecture called RIC and its functionality-defining xApps which are capable of automatically detecting situations where radio units can be put to sleep as well as handling the offloading procedures. Through testing inside a simulated network, the set of xApps designed as a solution resulted in a potential 20-35% decrease in energy consumption among a radio access network's radio units.
|
8 |
Nuoxus - um modelo de caching proativo de conteúdo multimídia para Fog Radio Access Networks (F-RANs)Costa, Felipe Rabuske 28 February 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-05-11T12:40:43Z
No. of bitstreams: 1
Felipe Rabuske Costa_.pdf: 3408830 bytes, checksum: 25a67ecb02629c811b5f305a1f2e3d27 (MD5) / Made available in DSpace on 2018-05-11T12:40:43Z (GMT). No. of bitstreams: 1
Felipe Rabuske Costa_.pdf: 3408830 bytes, checksum: 25a67ecb02629c811b5f305a1f2e3d27 (MD5)
Previous issue date: 2018-02-28 / Nenhuma / Estima-se que até o ano de 2020, cerca de 50 bilhões de dispositivos móveis estarão conectados a redes sem fio e que 78% de todo o tráfego de dados gerado por esse tipo de dispositivos será conteúdo multimídia. Essas estimativas fomentam o desenvolvimento da quinta geração de redes móveis (5G). Uma das arquiteturas mais recentemente proposta, chamada de Fog Radio Access Networks (F-RAN), dá aos componentes localizados na borda da rede poder de processamento e armazenamento endereçados às atividades da rede. Um dos principais problemas dessa arquitetura é o intenso tráfego de dados no seu canal de comunicação centralizado chamado fronthaul, utilizado para conectar as antenas (F-APs) à rede externa. Dado esse contexto, esse trabalho apresenta o Nuoxus, um modelo de caching de conteúdo multimídia voltado para F-RANs que visa amenizar esse problema. Ao armazenar esse tipo de conteúdo nos nós de rede mais próximos ao usuário, o número de acessos concorrentes ao fronthaul é reduzido, sendo esse um dos fatores agravantes na latência de comunicação na rede. O Nuoxus pode ser executado em qualquer nó da rede que possua capacidade de armazenamento e processamento, ficando responsável por gerenciar o caching de conteúdo desse nó. Sua política de substituição de conteúdo utiliza a similaridade de requisições entre os nós filhos e o restante da rede como um fator para definir a relevância de armazenar o conteúdo requisitado em cache. Além disso, utilizando esse mesmo processo, o Nuoxus sugere, de forma proativa, aos demais nós filhos que apresentam um alto grau de similaridade que façam o caching desse conteúdo, visando um
possível futuro acesso. A análise do estado da arte demonstra que até o momento não existe
nenhum outro trabalho que explore o histórico de requisições para fazer caching de conteúdo
em arquiteturas multicamadas para redes sem fio de forma proativa e sem utilizar algum componente centralizado para fazer coordenação e predição de caching. A fim de comprovar a eficiência do modelo, foi desenvolvido um protótipo utilizando o simulador ns-3. Os resultados obtidos demostram que a utilização do Nuoxus foi capaz de reduzir a latência de rede em cerca de 29.75%. Além disso, quando comparado com outras estratégias de caching, o número de acesso à cache dos componentes de rede aumentou em 53.16% em relação à estratégia que obteve o segundo melhor resultado. / It is estimated that by the year 2020, about 50 billion mobile devices will be connected to wireless networks and 78% of the data traffic of this kind of device will be multimedia content. These estimates foster the development of the 5th generation of mobile networks (5G). One of the most recently proposed architectures, named Fog Radio Access Networks or F-RAN, gives the components located at the edge of the network the processing power and storage capacity to address network activities. One of the main problems of this architecture is the intense data traffic in its centralized component named fronthaul, which is used to connect the antennas (FAPs) to the external network. Given this context, we propose Nuoxus, a multimedia content caching model for F-RANs that aims to mitigate this problem. By storing the content in the nodes closest to the user, the number of concurrent accesses to the fronthaul is reduced, which decreases the communication latency of the network. Nuoxus can run on any network node that has storage and processing capacity, becoming the responsible for managing the cache of that node. Its content replacement policy uses the similarity of requests between the child nodes and the rest of the network as a factor to decide the relevance of storing the requested content in the cache. Furthermore, by using this same process, Nuoxus proactively suggests to the child nodes whose degree of similarity is high to perform the caching of the content, assuming they will access the content at a future time. The State-of-the-art analysis shows that there is no other work that explores the history of requests to cache content in multi-layer architectures for wireless networks in a proactive manner, without using some centralized component to do coordination and prediction of caching. To demonstrate the efficiency of the model, a prototype was developed using the ns 3 simulator. The results obtained demonstrate that the use of Nuoxus reduced network latency in 29.75%. In addition, when compared to other caching strategies, the cache hit increased by 53.16% when compared to the strategy that obtained the second-best result.
|
9 |
BBU-RRH Association Optimization in Cloud-Radio Access Networks / Optimisation des associations BBU-RRH dans les réseaux Cloud-RANBoulos, Karen 04 July 2019 (has links)
De nos jours, la demande en trafic mobile a considérablement augmenté. Face à cette croissance, plusieurs propositions font l'objet d'étude pour remédier à un tel défi. L’architecture des réseaux d’accès de type Cloud (C-RAN) est l’une des propositions pour faire face à cette demande croissante, et constitue une solution candidate potentielle pour les réseaux futurs 5G. L'architecture C-RAN dissocie deux éléments principaux de la station de base: La BBU ou ``Baseband Unit", qui constitue une unité intelligente pour le traitement des données en bande de base, et le RRH ou ``Remote Radio Head", constituant en une antenne passive pour fournir l'accès aux utilisateurs (UEs). Grâce à l’architecture C-RAN, les BBUs sont centralement regroupées, alors que les RRHs sont distribués sur plusieurs sites. Plusieurs avantages sont ainsi dérivés, tels que le gain en multiplexage statistique, l’efficacité d’utilisation des ressources, et l’économie de puissance. Contrairement à l’architecture conventionnelle où chaque RRH est exclusivement associé à une BBU, dans l’architecture C-RAN, plusieurs RRHs sont regroupés en une seule BBU lorsque les conditions de charge sont faibles. Ceci présente plusieurs avantages, tel que l’amélioration en efficacité énergétique et la minimisation en consommation de puissance. Dans cette thèse, nous adressons le problème d’optimisation des associations BBU-RRH. Nous nous intéressons à l’optimisation des regroupements des RRHs aux BBUs en tenant compte de critères multiples. Plusieurs contraintes sont ainsi envisagées, tel que la réduction de la consommation d'énergie sous garantie de Qualité de Service (QoS) minimale. En outre, la prise en compte du changement du niveau d’interférence en activant/désactivant les BBUs est primordiale pour l’amélioration de l’efficacité spectrale. En plus, décider dynamiquement de la réassociation des RRHs aux BBUs sous des conditions de charges variables représente un défi, vu que les UEs connectés aux RRHs changeant leurs associations font face à des ``handovers" (HOs). / The demand on mobile traffic has been largely increasing nowadays. Facing such growth, several propositions are being studied to cope with this challenge. Cloud-Radio Access Networks Architecture (C-RAN) is one of the proposed solutions to address the increased demand, and is a potential candidate for future 5G networks. The C-RAN architecture dissociates two main elements composing the base station: The Baseband Unit (BBU), consisting in an intelligent element to perform baseband tasks functionalities, and the Remote Radio Head (RRH), that consists in a passive antenna element to provide access for serviced User Equipments (UEs). In C-RAN architecture, the BBUs migrate to a Cloud data center, while RRHs remain distributed across multiple sites. Several advantages are derived, such as statistical multiplexing gain, efficiency in resource utilization and power saving. Contrarily to conventional architecture, where each RRH is associated to one BBU, in C-RAN architecture, multiple RRHs can be embraced by one single BBU when network load conditions are low, bringing along several benefits, such as enhanced energy efficiency, and power consumption minimization. In this thesis, the BBU-RRH association optimization problem is addressed. Our aim is to optimize the BBU-RRH association schemes, taking into consideration several criteria. The problem presents many constraints: For example, achieving minimized power consumption while guaranteeing a minimum level of Quality of Service (QoS) is a challenging task. Further, taking into account the interference level variation while turning ON/OFF BBUs is paramount to achieve enhanced spectral efficiency. Moreover, deciding how to re-associate RRHs to BBUs under dynamic load conditions is also a challenge, since connected UEs face handovers (HOs) when RRHs change their associations.
|
10 |
Rust programming language as an alternative to C for RAN management applications / Undersökning av programmeringsspråket Rust som alternativ till Ci RAN-applikationerOlsson, Viktor January 2023 (has links)
Since the first official release of Rust 1.0 in 2015, the language has become one of the most well-liked programming languages among developers and has emerged as a competitor to other systems programming languages such as C and C++. Due to its unique ownership model, Rust is able to ensure memory safety, while also maintaining performance comparable to C and C++. An area that could potentially benefit from using Rust in its software is Radio Access Networks (RANs). The introduction of 5G mobile networks have lead to an increasing amount of base stations, making the network harder to manage. Therefore it is crucial that the software tasked with managing the network is of high quality. In this study, Rust will be compared to other systems programming languages and investigated as a potential alternative to C for use in RAN node management software. The two languages will be compared with regards to performance as well as safety. The results show that the execution speed of Rust applications are on par or better than their C counterpart, while the peak memory usage generally is higher in Rust. It was also shown that significant improvements in safety can be achieved, even in cases where the application is fairly straight forward. / Sedan första officiella utgåvan av Rust 1.0 2015 har språket blivit ett av de mest omtyckta språken bland utvecklare och seglat upp som en utmanare till andra system-programmeringsspråk såsom C och C++. Tack vare sin unika ägarmodell så kan Rust garantera minnessäkerhet, och samtidigt också erbjuda prestanda i paritet med C och C++. Ett område som med fördel skulle kunna använda Rust är programvaran i radionätverk. Introduktionen av 5G i mobila nätverk har lett till ett ökat antal basstationer, vilket gjort nätverken mer utmanande att underhålla. Det är därför viktigt att programvaran som utför underhållsfunktionerna är av hög kvalitet. I denna studie jämförs Rust med andra systemprogrammeringsspråk och undersöks som ett möjligt alternativ till C för underhållsfunktionerna i nätverksnoderna. De två språken undersöks med avseende på prestanda och säkerhet. Resultaten visar att exekveringshastigheten med Rust är i paritet med, eller bättre än, motsvarigheten i C, medan toppminnesutnyttjandet är högre med Rust. Studien visar också att signifikanta förbättringar i minnessäkerhet kan uppnås, även i fall då applikationen är ganska rättfram.
|
Page generated in 0.0723 seconds