Spelling suggestions: "subject:"photosensitization.""
1 |
A baseline evaluation of the cytotoxicity of gold nanoparticles in different types of mammalian cells for future radiosensitization studiesDe Bruyn, Shana January 2020 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Recently nanoparticles (NPs) have been introduced and used in combination with therapeutic approaches to develop nanotechnology-enabled medicine. These nanostructures allow for the exploitation of the physiochemical properties which may be beneficial in cancer treatment. The use of NPs in nanomedicine has proven successful in modern chemotherapeutics and has demonstrated promising potential in in vivo and in vitro radiosensitization studies. This is a baseline study aimed to determine the cytotoxic effects of AuNPs for potential radiosensitization analysis. The study analysed the effects of different AuNP sizes (30, 50 and 80nm), concentrations (5, 10 and 15 μg/ml) over various time periods in CHOK1 and A549 cells. AuNPs were characterised by DLS and ZP analysis and showed that particles were moderately polydispersed and moderately to highly stable in charge. The effects on viability and metabolic activity of cells were determined using crystal violet and the WST-1 assay.
|
2 |
Evaluation of the radiosensitizing or radioprotective/antioxidant potential of some selected compounds by polyacrylamide gel dosimetry and Fricke dosimeter, and utilization of the femtosecond infrared laser pulse filamentation as a novel, powerful beam for cancer radiotherapy / Évaluation du potentiel radiosensibilisateur ou radioprotecteur/antioxydant de quelques composés sélectionnés par dosimétrie par gel de polyacrylamide et dosimètre de Fricke, et utilisation de la filamentation par impulsion laser infrarouge femtoseconde comme un nouveau et puissant faisceau pour la radiothérapie du cancerMeesat, Ridthee January 2012 (has links)
In radiation treatment, a sufficiently high radiation dose must be delivered to the tissue volumes containing the tumor cells while the lowest possible dose should be deposited in surrounding healthy tissue. We developed an original approach that is fast and easy to implement for the early assessment of the efficiency of radiation sensitizers and protectors. In addition, we characterized a new femtosecond laser pulse irradiation technique. We are able to deposit a considerable dose with a very high dose rate inside a well-controlled macroscopic volume without deposition of energy in front or behind the target volume. The radioprotective efficiency was measured by irradiation of the Fricke solution incorporating a compound under study and measuring the corresponding production of ferric ions G (Fe3+ ). The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. We studied experimentally and simulated with a full Monte-Carlo computer code the radiation-induced chemistry of Fricke/cystamine solutions. Results clearly indicate that the protective effect of cystamine originates from its radical-capturing ability, which allows this compound to compete with the ferrous ions for the various fre radicals - especially · OH radicals and H· atoms - formed during irradiation of the surrounding water. The sensitizing capacity of radiation sensitizers was measured by irradiation of a polyacrylamide gel (PAG) dosimeter incorporating a compound under study and measuring the corresponding increase in the gradient between spin-spin relaxation rate (R2 ) and absorbed dose. We measured an irradiation energy-dependent increase in R 2 -dose sensitivity for halogenated compounds or a decrease for radioprotectors. Finally, we studied a novel laser irradiation method called "filamentation". We showed that this phenomenon results in an unprecedented deposition of energy and the dose rate thus achieved exceeds by orders of magnitude values previously reported for the most intense clinical radiotherapy systems. Moreover, the length of the dose-fre entrance region was adjusted by selecting the duration of femtosecond laser pulses. In addition, we provided evidence that the biological damage caused by this irradiation was similar to other ionizing radiation sources. [symboles non conformes]
|
3 |
Effects of Biophysical Parameters in Radiosensitizing Prostate Tumours with Ultrasound-stimulated MicrobubblesKim, Hyunjung 18 March 2013 (has links)
We demonstrate here that ultrasound-stimulated microbubbles can lead to enhanced cell death within tumors when combined with radiation. The aim of this study was to investigate different ultrasound parameters in conjunction with different concentrations of microbubbles with regards to this effect. Prostate xenograft tumors in Severe Combined Immunodeficient mice were subjected to ultrasound treatment that involved various peak negative pressures (250 kPa, 570 kPa, and 750 kPa), microbubble concentrations (8 µL/kg, 80 µL/kg, and 1000 µL/kg), and different radiation doses (0 Gy, 2 Gy, and 8 Gy). Twenty-four hours after treatment, tumors were excised and assessed for cell death. Histological analyses demonstrated that increases in radiation dose, microbubble concentration, and ultrasound pressure promoted apoptotic cell death and cellular disruption within tumors. Comparable increases in ceramide, a cell death mediator, were identified using immunohistochemistry. We also demonstrate that clinically-utilized microbubble concentrations combined with ultrasound can induce an enhancement in cell death.
|
4 |
Effects of Biophysical Parameters in Radiosensitizing Prostate Tumours with Ultrasound-stimulated MicrobubblesKim, Hyunjung 18 March 2013 (has links)
We demonstrate here that ultrasound-stimulated microbubbles can lead to enhanced cell death within tumors when combined with radiation. The aim of this study was to investigate different ultrasound parameters in conjunction with different concentrations of microbubbles with regards to this effect. Prostate xenograft tumors in Severe Combined Immunodeficient mice were subjected to ultrasound treatment that involved various peak negative pressures (250 kPa, 570 kPa, and 750 kPa), microbubble concentrations (8 µL/kg, 80 µL/kg, and 1000 µL/kg), and different radiation doses (0 Gy, 2 Gy, and 8 Gy). Twenty-four hours after treatment, tumors were excised and assessed for cell death. Histological analyses demonstrated that increases in radiation dose, microbubble concentration, and ultrasound pressure promoted apoptotic cell death and cellular disruption within tumors. Comparable increases in ceramide, a cell death mediator, were identified using immunohistochemistry. We also demonstrate that clinically-utilized microbubble concentrations combined with ultrasound can induce an enhancement in cell death.
|
5 |
A baseline evaluation of the cytotoxicity of gold nanoparticles in different types of mammalian cells for future radiosensitization studiesDe Bruyn, Shana January 2020 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Recently nanoparticles (NPs) have been introduced and used in combination with therapeutic approaches to develop nanotechnology-enabled medicine. These nanostructures allow for the exploitation of the physiochemical properties which may be beneficial in cancer treatment. The use of NPs in nanomedicine has proven successful in modern chemotherapeutics and has demonstrated promising potential in in vivo and in vitro radiosensitization studies. This is a baseline study aimed to determine the cytotoxic effects of AuNPs for potential radiosensitization analysis. The study analysed the effects of different AuNP sizes (30, 50 and 80nm), concentrations (5, 10 and 15 μg/ml) over various time periods in CHOK1 and A549 cells.
|
6 |
UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization / UCHL1-HIF-1経路による抗酸化作用はがん細胞に対する放射線増感のための治療標的であるNakashima, Ryota 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20974号 / 医博第4320号 / 新制||医||1026(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 増永 慎一郎, 教授 高田 穣, 教授 武田 俊一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
7 |
Therapeutic potential of Rad51 inhibitionLe, Douglas 12 March 2016 (has links)
DNA provides the instructions and regulation of cell growth and survival. Mutations in DNA can cause uncontrolled and unregulated cell proliferation, resulting in cancer. Treatment of cancer involves physical removal of these cells through surgery or inducing cell death by causing irreversible damage to DNA through chemotherapy and radiotherapy. However, natural DNA repair mechanisms may interfere with therapy and may even be increased in cases of therapy resistant cancer. The use of chemotherapy and radiotherapy leads to increased recruitment of DNA repair proteins while aggressive, therapy resistant cancers show overexpression of DNA repair proteins. Rad51 is a protein involved in the homologous recombination (HR) DNA repair process. Rad51 is recruited to sites of DNA damage caused by double stranded breaks, often generated by chemotherapy and radiotherapy. It is expected that inhibition of Rad51 will impair the HR repair process while enhancing the effectiveness of chemotherapy and radiotherapy compared to conventional means. As a result, this literature review aims to identify and examine the drug inhibitors of Rad51 in order to demonstrate the potential viability of this novel treatment in a variety of cancers.
|
8 |
Modifications de surface des nanodiamants : compréhension des mécanismes d’échanges électroniques et mise en évidence d’un effet thérapeutique / Nanodiamonds surface modifications : understanding of electron exchange mecanisms and evidence of a therapeutic effectPetit, Tristan 18 March 2013 (has links)
A partir de l'étude des effets de la chimie de surface des Nanodiamants (NDs) sur leurs propriétés électroniques, cette thèse a permis la mise en évidence d'un effet thérapeutique des NDs sur des cellules humaines. En particulier, il a été montré que les NDs de détonation peuvent générer des radicaux libres oxygénés sous radiation ionisante, ce qui pourrait améliorer l'efficacité de certains traitements de radiothérapie actuels. Les échanges électroniques entre le coeur des NDs et leur environnement sont en effet favorisés après des traitements de surface, notamment d'hydrogénation et de graphitisation de surface. Les conditions expérimentales permettant d'obtenir des NDs hydrogénées (NDs-H) sous plasma d'hydrogène ont été optimisées sous ultravide, puis ont été utilisées pour préparer de grandes quantités de NDs-H sous forme pulvérulente. La même procédure a été appliquée pour la graphitisation de surface des NDs, en utilisant des recuits sous vide à haute température. L'effet de ces traitements de surface sur les propriétés d'interactions électroniques des NDs a été étudié après exposition à l'air ambiant, puis en dispersion dans l'eau. Ces traitements de surface assurent notamment un potentiel Zeta positif aux NDs, dont l'origine a été discutée. Enfin, les interactions des NDs avec plusieurs lignées de cellules tumorales humaines ont été étudiées et l'efficacité des NDs pour radiosensibiliser des cellules radiorésistantes sous irradiation gamma a été montrée, ouvrant de nouvelles perspectives d'applications des NDs en nanomédecine. . / In this thesis, a therapeutic effect of nanodiamonds (NDs) has been evidenced by investigating the role of NDs surface chemistry on their electronic properties. More precisely, the generation of reactive oxygen species from detonation NDs under ionizing radiation, which could improve current radiotherapy treatments, has been demonstrated. To this end, surface treatments facilitating electron transfer from NDs to their environment, namely hydrogenation and surface graphitization, were developed. Experimental conditions ensuring an efficient hydrogenation by hydrogen plasma were determined under ultrahigh vacuum, before being used to prepare large quantities of NDs in powder phase. A similar procedure was applied to the surface graphitization of NDs, performed by annealing under vacuum at high temperature. The impact of such surface treatments on the electronic interaction properties of NDs has been investigated under ambient air and after dispersion in water. These surface treatments induce a positive Zeta potential to NDs in water, which origin has been discussed. Finally, their interactions with human tumor cells were observed. Radiosensitization of tumor cells using NDs under gamma irradiation was demonstrated, opening new perspectives for NDs in nanomedicine.
|
9 |
Influence de l’inhibition des signaux de survie et radiosensibilisation des cancers pulmonaires / Impact of targeting cell survival signaling and radiosensitization of lung cancerLoriot, Yohann 02 December 2014 (has links)
Les thérapies ciblées sont des agents dont le but est d’inhiber une voie oncogénique spécifiquement activée dans une tumeur. Ces thérapies peuvent donc cibler l’angiogenèse tumorale, les voies de signalisation cellulaire, la prolifération infinie, l’anti-apoptose ou le pouvoir métastatique. Outre leur effet en monothérapie, leur intérêt repose également sur leur combinaison avec les traitements standards, chimiothérapie, radiothérapie ou même chirurgie. Dans ce contexte, l’association des thérapies ciblées et de la radiothérapie paraît séduisante. En effet, les mécanismes qui sous-tendent la sensibilité ou la résistance à une irradiation sont maintenant mieux connus et permettent d’envisager des manipulations thérapeutiques afin d’améliorer encore les résultats d’une radiothérapie ou d’une radiochimiothérapie. L’objectif de cette thèse était d’exploiter les données d’histologie moléculaires des carcinomes pulmonaires pour évaluer de nouvelles approches de radiosensibilisation basée sur l’inhibition de signaux de survie en ciblant les protéines Bcl-2 et Bcl-XL et la voie IGF-1 dans les carcinomes à petites cellules (CPC) et en ciblant la voie EGFR dans les carcinomes non à petites cellules du poumon (CPNPC). L’un des objectifs était également d’intégrer une méthodologie de combinaison plus précise compte-tenu des discordances très fréquemment observées entre les effets pré-cliniques d’une association et les résultats des études cliniques de la même combinaison. Dans une première partie, nous avons cherché à inhiber les mécanismes antitapoptotiques mis en jeu dans les CPC au moyen de deux nouvelles classes de thérapies ciblées : un oligonucléotide antisens ciblant l’ARNm du gène BCL2 (oblimersen) et un « BH3 mimetic » inhibiteur des protéines Bcl-2/Bcl-XL (S44563). Nous avons démontré dans ces deux études l’intérêt du ciblage de « l’anti-apoptose » pour radiosensibliser les lignées de CPC. En utilisant le S44563, un « BH3 mimetic » qui induit une apoptose via la voie mitochondriale dans les lignées qui surexpriment les cibles à savoir Bcl-2 et Bcl-XL,, nous avons montré que l’inhibition de Bcl-2 et Bcl-XL permettait d’induire une radiosensibilisation par induction de l’apoptose. Le mécanisme d’interaction reposait probablement par une induction de l’expression des protéines anti-apoptotiques, en particulier Bcl- XL à la suite d’une irradiation via l’activation de la voie NF-κB. Ceci est confirmé par les études de séquence montrant que l’administration pendant et après l’administration de la radiothérapie est plus efficace réalisant ainsi une chimiosensibilisation sous l’effet d’une irradiation rendant les cellules tumorales plus dépendantes (concept d’addiction oncogénique contextuelle) aux mécanismes de résistance à l’apoptose. Dans une seconde partie, nous avons également montré que l’inhibition d’une voie de signalisation cellulaire (la voie IGF-1) permettait également d’obtenir une radiosensibilisation tumorale validant ainsi l’intérêt de ces combinaisons. En particulier, L’anticorps monoclonal ciblant IGF-1R, le R1507 augmente l’efficacité du cisplatine et au final améliore l’efficacité de la radio-chimiothérapie dans plusieurs lignées de CPC via la diminution de l’expression de IGF-1R avec pour conséquence une diminution de l’activation de ses effecteurs, en particulier AKT, indiquant que le R1507 augmente la radiosensibilité en supprimant l’activation de IGF-1R secondaire à l’irradiation. Cependant, nous avons montré par différentes approches d’étude du transcriptome que les cellules tumorales traitées par le R1507 pendant 4 semaines s’adaptaient en ré-exprimant IGF-1R, en activant p-IRS1 et en activant différentes voies oncogéniques telles que l’angiogenèse ou d’autres voies de signalisation cellulaire. Ces résultats suggèrent donc les limites d’un schéma adapté chez l’homme lors d’une radio-chimiothérapie concomitante et plaident pour une association précoce à d’autres thérapies ciblées. / Targeted therapies are drugs that block a specific molecular target involved in following alterations in cell physiology: growth signal self-sufficiency, insensitivity to growth-inhibitory signals, evasion of apoptosis, an unlimited replicative potential, sustained angiogenesis, tissue invasion, and metastasis. Although these compounds showed efficacy when given alone, there is now a rationale to combine these agents with other antitumor therapies such as chemotherapy, radiation and surgery. In this context, there is compelling data supporting the association between targeted therapies and radiation. The better understanding of mechanisms of sensitivity or resistance to radiation may help to envision new strategies to improve its efficacy. The primary goal of this work was to assess new strategies of radiosensitization based on molecular characteristics of both small cell lung cancer (by targeting Bcl-2 and Bcl- XL proteins as well as IGF-I pathway) and non-small cell lung cancer (by targeting EGFR pathway). The second objective was also to assess new methods to better investigate combination of radiation with new targeted therapies. In the first part of the work, we evaluated the impact of the inhibition of BCL-2 in small cell lung cancer cell lines with oblimersen, an antisense BCL-2 oligodeoxynucleotide and with a small peptide BH3 mimetic, S44563 which targets both Bcl-2 and Bcl- XL proteins. We showed that inhibiting anti-apoptotic mechanisms could enhance radiosensitivity of SCLC cells. S44563 caused SCLC cells to acquire hallmarks of apoptosis through activation of the mitochondrial pathway in Bcl2 and Bcl- XL overexpressing cell lines. S44563 markedly enhanced the sensitivity of SCLC cells to radiation in both in vitro and in vivo assays through apoptosis induction. This positive interaction was explained by the induction of radiation-induced anti-apopototic proteins, mainly Bcl- XL by the NF-κB pathway. These data were confirmed by in vivo experiments showing that the radiosensitization was greater when S44563 was given after the completion of the radiation in the context of radiation-induced oncogenic addiction. In the second part of the work, we showed that IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model. R1507 (a monoclonal antibody directed against IGF-1R), exhibited synergistic effects with both cisplatin and IR in SCLC cell lines through IGF-IR downregulation and reduced activation of downstream AKT. However, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis, and survival. These data underscore the challenge of the combination of concomitant radiotherapy and chemotherapy and support the early use of targeted therapies to improve the antitumor efficacy.
|
10 |
Utilisation des nanoparticules pour ameliorer les performances de la hadrontherapie / Improvement of hadrontherapy by addition of nanoparticlesPorcel, Erika 10 November 2011 (has links)
Le cancer est l'une des principales causes de décès dans le monde, trouver des traitements plus efficaces est donc d’un intérêt majeur. La radiothérapie conventionnelle utilisant des rayons X peut détruire des tumeurs, mais provoque des effets secondaires nocifs pour les tissus sains environnants. L'hadronthérapie est un outil utilisant des ions pour irradier la tumeur et qui s’avère très efficace pour le traitement du cancer. Les propriétés physiques particulières des ions permettent de mieux cibler et donc d’irradier un volume bien défini comme la tumeur. Afin de renforcer le ciblage et l'efficacité des traitements, une amplification de la mort cellulaire spécifiquement dans la tumeur est nécessaire. Pour améliorer les traitements, nous proposons une stratégie innovante qui combine des nano-médicaments et l'irradiation par des ions rapides.Nous avons déjà montré que les sels de platine renforcent fortement l’endommagement à l'ADN induit par les différentes irradiations (telles que les rayons X et les ions rapides) et accélèrent la mort des cellules. Cet effet est attribué à l'ionisation des électrons du platine en couche interne par les électrons produits le long de la trace, suivi par la désexcitation Auger du métal. Ces électrons Auger peuvent induire des dommages de façon directe ou par effet indirect via les radicaux produits dans l’eau. Le défi est de déposer ces sensibilisateurs dans la tumeur. Les développements récents en matière de nanotechnologie apportent de nouvelles perspectives par l’utilisation de nanoparticules, qui peuvent être fonctionnalisées afin de cibler des tissus spécifiques.Notre étude montre que l'irradiation avec des ions carbone provenant du HIMAC (centre médical Japonais, leader en hadronthérapie) en présence de ces nanoparticules induit une augmentation significative des dommages à l'ADN. En particulier, notre travail permet de comprendre que cette combinaison induit des dommages plus complexes que lorsque les sels de platine sont utilisés. Cet effet est expliqué par l'auto-amplification des cascades d'électrons Auger à l'intérieur des nanoparticules. Des radicaux de l'eau sont produits à l'échelle de l’ADN et conduisent à son endommagement. Cette amplification des dommages a été observée dans les cellules vivantes en présence de nanoparticules bien qu’elles se trouvent exclusivement dans le cytoplasme. L’amplification des dommages décrite pour l’ADN peut avoir lieu dans n'importe quelle molécule contenue dans le cytoplasme ce qui peut mener à la destruction d’organites.Ce travail à l'interface de la physique, de la chimie et de la biologie présente un fort intérêt pour l'élaboration de protocoles médicaux tels que l'hadronthérapie et la nanomédecine, ceci afin d’améliorer l'efficacité et la précision des traitements. / Cancer is one of the major causes of death in the world, finding more effective treatments is therefore of major interest. Conventional radiotherapy using X-rays can destroy tumors but causes harmful side effects to surrounding healthy tissues. The hadrontherapy is a powerful tool for cancer treatment which uses ions to irradiate the tumor. The particular physical properties of ions allow better targeting, and therefore, an irradiation of the well-defined volume of the tumor. In order to further enhance the targeting and the efficiency of the treatments, an amplification of the cell death rate specifically in the tumor is of strong interest. To improve treatments, we propose an innovative strategy that combines nano-drugs and irradiation by fast ions.We already showed that platinum salts enhance strongly DNA damage induced by different radiations (such as X-rays and fast ions) and accelerate cell death. This effect is attributed to the ionization of inner shell electrons of platinum by the electrons produced along the track, followed by Auger de-excitation of the metal. These Auger electrons can induce damage by direct or indirect effect (water radicals mediated). The challenge is to locate these sensitizers in the tumor. Recent developments in nanotechnology pointed out new perspectives by using nanoparticles, which can be functionalized to target specific tissues.Our study shows that irradiation with carbon ions from HIMAC (Japanese medical center, leader in hadrontherapy) in presence of these nanoparticles induces a significant increase of DNA damage. In particular, our work helps to understand that this combination induces more complex lethal damage compared to platinum salts. This effect is explained by the auto-amplification of Auger electron cascades inside the nanoparticles. Numerous water radicals are produced at DNA scale leading to its damage. Same observation of damage amplification has been made in living cells loaded with nanoparticles while they stay exclusively in the cytoplasm. The amplification of damage described on DNA can occur in a cytoplasm included molecule and may induce organelle destruction.This work at the interface of physics, chemistry and biology finds strong interest for developing medical protocols such as hadrontherapy and nanomedicine improving effectiveness and accuracy of treatment.
|
Page generated in 0.1255 seconds