• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 16
  • 5
  • 1
  • Tagged with
  • 58
  • 27
  • 23
  • 20
  • 18
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A local error analysis of the boundary concentrated FEM

Eibner, Tino, Melenk, Jens Markus 01 September 2006 (has links) (PDF)
The boundary concentrated finite element method is a variant of the hp-version of the FEM that is particularly suited for the numerical treatment of elliptic boundary value problems with smooth coefficients and boundary conditions with low regularity or non-smooth geometries. In this paper we consider the case of the discretization of a Dirichlet problem with exact solution $u \in H^{1+\delta}(\Omega)$ and investigate the local error in various norms. We show that for a $\beta > 0$ these norms behave as $O(N^{−\delta−\beta})$, where $N$ denotes the dimension of the underlying finite element space. Furthermore, we present a new Gauss-Lobatto based interpolation operator that is adapted to the case non-uniform polynomial degree distributions.
32

Optimal Control of the Classical Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin K., Herzog, Roland 02 November 2010 (has links) (PDF)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.
33

A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities

Pester, Cornelia January 2006 (has links)
Zugl.: Chemnitz, Techn. Univ., Diss., 2006
34

Fast multipole methods for oblique derivative problems

Gutting, Martin January 2007 (has links)
Zugl.: Kaiserslautern, Techn. Univ., Diss., 2007
35

A Dirichlet-Dirichlet DD-pre-conditioner for p-FEM

Beuchler, Sven 31 August 2006 (has links) (PDF)
In this paper, a uniformly elliptic second order boundary value problem in 2D is discretized by the p-version of the finite element method. An inexact Dirichlet-Dirichlet domain decomposition pre-conditioner for the system of linear algebraic equations is investigated. The solver for the problem in the sub-domains and a pre-conditioner for the Schur-complement are proposed as ingredients for the inexact DD-pre-conditioner. Finally, several numerical experiments are given.
36

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links) (PDF)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
37

Nonlinear Riemann-Hilbert Problems

Semmler, Gunter 13 December 2004 (has links)
Riemann-Hilbert-Probleme sind Randwertaufgaben für im Einheitskreis $\mathbb D$ holomorphe Funktionen $w$, deren Randwerte $w(t)$ auf gewissen Kurven $M_t$ liegen sollen. Ein Teil der Untersuchungen ist dem Fall explizit gegebener Kurven gewidmet. Dabei werden bekannte Resultate über glatte Kurven auf stetige Restriktionskurven erweitert, und die Existenz von Lösungen in gewissen Hardy-Räumen gezeigt. Die Eindeutigkeitsfrage führt auf ein Gegenbeispiel, das zugleich eine Vermutung aus einer Dissertation von Belch widerlegt. Der andere Teil der Untersuchungen ist dem klassischen Fall geschlossener Restriktionskurven gewidmet. Hier steht statt der Abschwächung von Glattheitsvoraussetzungen die Formulierung geeigneter Nebenbedingungen im Mittelpunkt. Die Abhängigkeit der Lösung von Zusatzbedingungen erweist sich als Verallgemeinerung des Verhaltens von Blaschkeprodukten. Für drei Interpolationpunkte kann charakterisiert werden, wann durch sie eine Lösung mit Windungszahl 1 verläuft, durch $k$ Interpolationspunkte wird die Existenz einer Lösung mit Windungszahl $k-1$ gezeigt.
38

Partial Fourier approximation of the Lamé equations in axisymmetric domains

Nkemzi, Boniface, Heinrich, Bernd 14 September 2005 (has links) (PDF)
In this paper, we study the partial Fourier method for treating the Lamé equations in three-­dimensional axisymmetric domains subjected to nonaxisymmetric loads. We consider the mixed boundary value problem of the linear theory of elasticity with the displacement u, the body force f \in (L_2)^3 and homogeneous Dirichlet and Neumann boundary conditions. The partial Fourier decomposition reduces, without any error, the three­dimensional boundary value problem to an infinite sequence of two­dimensional boundary value problems, whose solutions u_n (n = 0,1,2,...) are the Fourier coefficients of u. This process of dimension reduction is described, and appropriate function spaces are given to characterize the reduced problems in two dimensions. The trace properties of these spaces on the rotational axis and some properties of the Fourier coefficients u_n are proved, which are important for further numerical treatment, e.g. by the finite-element method. Moreover, generalized completeness relations are described for the variational equation, the stresses and the strains. The properties of the resulting system of two­dimensional problems are characterized. Particularly, a priori estimates of the Fourier coefficients u_n and of the error of the partial Fourier approximation are given.
39

A Dirichlet-Dirichlet DD-pre-conditioner for p-FEM

Beuchler, Sven 31 August 2006 (has links)
In this paper, a uniformly elliptic second order boundary value problem in 2D is discretized by the p-version of the finite element method. An inexact Dirichlet-Dirichlet domain decomposition pre-conditioner for the system of linear algebraic equations is investigated. The solver for the problem in the sub-domains and a pre-conditioner for the Schur-complement are proposed as ingredients for the inexact DD-pre-conditioner. Finally, several numerical experiments are given.
40

A local error analysis of the boundary concentrated FEM

Eibner, Tino, Melenk, Jens Markus 01 September 2006 (has links)
The boundary concentrated finite element method is a variant of the hp-version of the FEM that is particularly suited for the numerical treatment of elliptic boundary value problems with smooth coefficients and boundary conditions with low regularity or non-smooth geometries. In this paper we consider the case of the discretization of a Dirichlet problem with exact solution $u \in H^{1+\delta}(\Omega)$ and investigate the local error in various norms. We show that for a $\beta > 0$ these norms behave as $O(N^{−\delta−\beta})$, where $N$ denotes the dimension of the underlying finite element space. Furthermore, we present a new Gauss-Lobatto based interpolation operator that is adapted to the case non-uniform polynomial degree distributions.

Page generated in 0.0859 seconds