• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 16
  • 5
  • 1
  • Tagged with
  • 58
  • 27
  • 23
  • 20
  • 18
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
42

Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer Randwertaufgaben

Martin, Frank 25 February 2011 (has links) (PDF)
In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.
43

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity

Eschke, Andy 30 July 2014 (has links) (PDF)
The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application, the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being expatiated on a special case of linear boundary conditions.
44

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity

Eschke, Andy 31 July 2014 (has links) (PDF)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.
45

Shear behavior of plane joints under CNL and DNL conditions: Lab testing and numerical simulation

Dang, Wengang 17 August 2017 (has links) (PDF)
The aim of this research work is to deepen the understanding of joint shear behavior under different boundary conditions. For this purpose, joint closure tests under quasi-static and dynamic conditions, direct shear and cyclic shear tests under CNL and DNL boundary conditions of plane joints are performed using GS-1000 big shear box device. The dissertation also presents the procedure to simulate the shear box device and simulating the behavior of plane joints at the micro-scale using FLAC3D. Special attention has been given to understand the influencing factors of the normal stress level, direct shear rate, horizontal cyclic shear frequency, normal impact frequency, horizontal cyclic shear displacement amplitude and vertical impact force amplitude. Lab test and numerical simulation results show that the quasi-static joint stiffness increases with increasing normal force. Dynamic joint stiffness decreases with increasing superimposed normal force amplitudes. Normal impact frequencies have little influence on the joint stiffness. Rotations and stress changes at the plane joint during shearing are proven. Rotations and development of stress gradients can be decreased significantly by increasing the size of the bottom specimen and applying a shear velocity at the upper shear box and normal loading piston. Furthermore, peak shear force increases with increasing normal force. Friction angle of cyclic shear tests is smaller than that of direct shear tests. Moreover, significant time shifts between normal and shear force (shear force delay), normal force and friction coefficient (friction coefficient delay) during direct shear tests under DNL boundary conditions are observed and the reference quantity ‘shear-velocity-normal-impact-frequency’ (SV-NIF) to describe the behavior under DNL boundary conditions is defined. Peak shear force and minimum friction coefficient increase with increasing SV-NIF. Relative time shift between normal force and shear force decreases with increase of SV-NIF. The mechanical behavior of the GS-1000 big shear box device is simulated and the loss of normal force caused by the tilting of the loading plate is quantified. Finally, the novel direct and cyclic shear strength criterions under DNL conditions are put forward. The shear strength criterions are in close agreement with the measured values, which indicates that the novel shear strength criterions are able to predict the shear strength under DNL conditions.
46

Partial Fourier approximation of the Lamé equations in axisymmetric domains

Nkemzi, Boniface, Heinrich, Bernd 14 September 2005 (has links)
In this paper, we study the partial Fourier method for treating the Lamé equations in three-­dimensional axisymmetric domains subjected to nonaxisymmetric loads. We consider the mixed boundary value problem of the linear theory of elasticity with the displacement u, the body force f \in (L_2)^3 and homogeneous Dirichlet and Neumann boundary conditions. The partial Fourier decomposition reduces, without any error, the three­dimensional boundary value problem to an infinite sequence of two­dimensional boundary value problems, whose solutions u_n (n = 0,1,2,...) are the Fourier coefficients of u. This process of dimension reduction is described, and appropriate function spaces are given to characterize the reduced problems in two dimensions. The trace properties of these spaces on the rotational axis and some properties of the Fourier coefficients u_n are proved, which are important for further numerical treatment, e.g. by the finite-element method. Moreover, generalized completeness relations are described for the variational equation, the stresses and the strains. The properties of the resulting system of two­dimensional problems are characterized. Particularly, a priori estimates of the Fourier coefficients u_n and of the error of the partial Fourier approximation are given.
47

Optimal Control of the Classical Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin K., Herzog, Roland January 2010 (has links)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.:1 Introduction 2 Model Equations 3 The Optimal Control Problem and Optimality Conditions 4 Discretization of the Forward and Adjoint Systems 5 Numerical Results 6 Discussion and Conclusion A Formal Derivation of the Optimality Conditions B Transport Theorems and Shape Calculus
48

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity

Eschke, Andy January 2014 (has links)
The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application, the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being expatiated on a special case of linear boundary conditions.
49

Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer Randwertaufgaben

Martin, Frank 17 December 2010 (has links)
In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.
50

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity

Eschke, Andy January 2014 (has links)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.

Page generated in 0.0558 seconds