Spelling suggestions: "subject:"ranking""
11 |
Sustentabilidade: da produção à operacionalização de um modelo de cidadeGonzalez, Mariela E. Toro 17 April 2018 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2018-06-26T12:32:16Z
No. of bitstreams: 1
Mariela E. Toro Gonzalez.pdf: 1655731 bytes, checksum: 5070bcdbf43a4bba182a68ff75b09fcf (MD5) / Made available in DSpace on 2018-06-26T12:32:17Z (GMT). No. of bitstreams: 1
Mariela E. Toro Gonzalez.pdf: 1655731 bytes, checksum: 5070bcdbf43a4bba182a68ff75b09fcf (MD5)
Previous issue date: 2018-04-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The notion of sustainability has been widely used by several sectors of the social life without any questioning about its origin and trajectory. In addition, it is now used to define sustainable cities models and urban agendas, operated by urban sustainability consulting firms. In this sense, this study aimed, first of all, to traverse the notion of sustainability, using Niklas Luhmann’s social systems theory, from the environmental movements of the 1960s and 1970s, through its systematization by the UN, until its coupling to the economic system. Once coupled with the economic system, the notion of sustainability has become a legitimating mark of sustainable practices and businesses, through the sustainable cities model. In addition, this study aimed to demonstrate how this model is operationalized through the rankings of sustainable cities produced by multinational urban sustainability consulting firm, responsible for providing sustainable services and business destined to cities / A noção de sustentabilidade vem sendo amplamente utilizada por diversos setores da vida social sem que haja qualquer questionamento sobre sua origem e trajetória. Além disso, ela é hoje usada para definir modelos de cidades sustentáveis e agendas urbanas, operacionalizadas por empresas multinacionais de consultoria em sustentabilidade urbana. Nesse sentido, este estudo se propôs, primeiramente, percorrer a trajetória da noção de sustentabilidade, a partir da teoria dos sistemas sociais de Niklas Luhmann, desde os movimentos ambientais dos anos de 1960 e 1970, passando pela sua sistematização pela ONU até seu acoplamento ao sistema econômico. Uma vez acoplada ao sistema econômico, a noção de sustentabilidade passou a constituir-se como uma marca legitimadora de práticas e negócios sustentáveis, por meio do modelo de cidade sustentável. Além disso, este trabalho demonstra como esse modelo é operacionalizado por meio dos rankings de cidades sustentáveis, produzidos por empresas multinacionais de consultoria em sustentabilidade urbana, elas mesmas responsáveis por oferecer serviços e negócios sustentáveis destinados às cidades
|
12 |
Valuation of Hong Kong bonds.January 1999 (has links)
by Yow Nga-Yee. / Thesis (M.B.A.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 35-36). / ABSTRACT --- p.ii / TABLE OF CONTENTS --- p.iii / LIST OF ILLUSTRATIONS --- p.iv / LIST OF TABLE --- p.v / Chapter / Chapter I. --- INTRODUCTION --- p.1 / Market Structure --- p.1 / Chapter II. --- VALUATION OF CREDIT RISK --- p.9 / Introducing CreditMetrics --- p.10 / Credit rating anomalies --- p.15 / Application of bond analysis to the Hong Kong Market --- p.15 / Chapter III. --- METHODOLOGY OF HONG KONG BOND RATING --- p.18 / Rating at a Global Perspective --- p.19 / Country risk: Emerging markets --- p.22 / Chapter III. --- COMPARISON BETWEEN HONG KONG BOND AND US BOND OF SAME CREDIT RATING --- p.26 / Methodology --- p.26 / The result --- p.27 / Discussion of the data set --- p.29 / Explanations of the result --- p.30 / Chapter IV. --- CONCLUSION --- p.33 / BIBILIOGRAPHY --- p.48
|
13 |
Cidades inteligentes: proposta de um modelo brasileiro multi-ranking de classificação / Smart cities: proposal of a brazilian multi-ranking classification model.Guimarães, José Geraldo de Araujo 04 May 2018 (has links)
A urbanização acentuada, fenômeno crescente das últimas décadas, tem atingido níveis elevadíssimos e criado enormes desafios para a gestão das cidades, além de trazer uma vasta gama de efeitos nefastos para a qualidade de vida de seus cidadãos. Dados da ONU de 2016, indicam tratar-se de um caminho sem volta, com uma tendência de agravamento nos próximos anos. Para tentar mitigar esta situação, muito se tem discutido em como aumentar o nível de inteligência das cidades e o interesse pelo tema Cidades Inteligentes tem crescido. Apesar disso, ainda não existe consenso sobre um conceito de cidade inteligente. Se há tempos este conceito se baseava exclusivamente no pilar da tecnologia, hoje uma visão mais evoluída e holística incorpora várias outras dimensões. Já a maioria dos modelos de classificação existentes são estrangeiros e não são aderentes à realidade de um país tão diverso e tão desigual quanto o Brasil. No âmbito nacional, existem algumas iniciativas de criação de conceitos e de modelos de classificação, mas, ou são baseados unicamente no componente tecnológico, ou buscam apenas a criação de rankings tradicionais baseados em ponderações arbitrárias de seus formuladores. A dificuldade de adequação do conceito e dos modelos de classificação à realidade brasileira foram os dois motores principais desta tese. O primeiro objetivo foi desenvolver um conceito de cidade inteligente para o contexto brasileiro. O segundo foi propor um modelo multidimensional de classificação, que fugisse aos padrões tradicionais de um ranking e fosse um instrumento efetivo de aprendizagem, benchmarking e de apoio ao planejamento de políticas públicas das cidades. Por meio de um estudo exploratório e descritivo, junto a 3 cidades de portes diferentes do estado de São Paulo, foram desenvolvidas pesquisas de abordagem quantitativa e qualitativa. A primeira utilizou questionários fechados e levantamento de dados em bases de indicadores específicos para o cálculo dos componentes do Índice Brasileiro Multidimensional de Classificação de Cidades Inteligentes - IBMCCI. Este produto final da tese emprega a mesma abordagem orientada ao usuário do U-MULTIRANK, o ranking multidimensional global de universidades da Comunidade Europeia. A versão final do modelo proposto foi disponibilizada para uso dos gestores municipais com a liberdade de seleção das dimensões, dos indicadores e dos municípios equivalentes para análise. A abordagem qualitativa da pesquisa foi conduzida por meio de entrevistas semiestruturadas, junto a 2 especialistas em gestão municipal. Para validar a ferramenta construída utilizou-se a técnica de validação de conteúdo. Chegou-se à conclusão que é necessário ajustar alguns fatores do modelo e adequar a periodicidade de edição do índice para coincidir com o calendário das eleições municipais. Com estas adequações, o IBMCCI demonstrou grande potencial de se tornar uma ferramenta efetiva de apoio para os formuladores de políticas públicas municipais. / The strong urbanization, a phenomenon that has increased in recent decades, has reached a very high level and has created enormous challenges for the management of cities, as well as bringing a wide range of harmful effects to the quality of life of its citizens. UN data of 2016 indicates that this is one-way road, and it\'s forecast to be worse in the coming years. Trying to mitigate this situation, much has been discussed about how to increase the smartness level of the cities and the interest in subject of Smart Cities has grown. Despite this, there is still no consensus on a smart city concept. If for some time this concept was based exclusively on the pillar of technology, today a more evolved and holistic vision would incorporate several other dimensions. Most of the existing classification models are foreign and are not adherent to the reality of a country as diverse and as unequal as Brazil. At the national level, there are some initiatives to create concepts and classification models, but they are based solely on the technological component or they only seek to create traditional rankings based on arbitrary weights of their formulators. The difficulty of adapting the concepts and the classification models to the Brazilian reality were the two main engines of this thesis. The first aim was to develop a concept of Smart cities for the Brazilian context. The second one was to propose a multidimensional classification model, which would escape the traditional standards of a ranking and be an effective tool for learning, benchmarking and supporting the planning of public policies in cities. By means of an exploratory and descriptive study, along with 3 cities of different sizes of the state of São Paulo, research into quantitative and qualitative approaches were developed. The first one used close ended questionnaires and data collection based on specific indicators for the calculation of the components of the Brazilian Multidimensional Smart Cities Classification Index (IBMCCI). This final thesis product employs the same user-oriented approach as U-MULTIRANK, the multidimensional global ranking of European Community universities. The final version of the proposed model was made available for use by municipal managers with the freedom to select dimensions, indicators and equivalent municipalities for analysis. The qualitative approach of the research was conducted through semi-structured interviews, with 2 specialists in municipal management. In order to validate the built tool, the content validity technique was used. It has come to the conclusion that it is necessary to adjust some factors of the model and to adapt the periodicity of edition of the index to coincide with the calendar of the municipal elections. With these adaptations, the IBMCCI has demonstrated great potential to become an effective support tool for municipal public policy makers.
|
14 |
"Novas abordagens em aprendizado de máquina para a geração de regras, classes desbalanceadas e ordenação de casos" / "New approaches in machine learning for rule generation, class imbalance and rankings"Prati, Ronaldo Cristiano 07 July 2006 (has links)
Algoritmos de aprendizado de máquina são frequentemente os mais indicados em uma grande variedade de aplicações de mineração dados. Entretanto, a maioria das pesquisas em aprendizado de máquina refere-se ao problema bem definido de encontrar um modelo (geralmente de classificação) de um conjunto de dados pequeno, relativamente bem preparado para o aprendizado, no formato atributo-valor, no qual os atributos foram previamente selecionados para facilitar o aprendizado. Além disso, o objetivo a ser alcançado é simples e bem definido (modelos de classificação precisos, no caso de problemas de classificação). Mineração de dados propicia novas direções para pesquisas em aprendizado de máquina e impõe novas necessidades para outras. Com a mineração de dados, algoritmos de aprendizado estão quebrando as restrições descritas anteriormente. Dessa maneira, a grande contribuição da área de aprendizado de máquina para a mineração de dados é retribuída pelo efeito inovador que a mineração de dados provoca em aprendizado de máquina. Nesta tese, exploramos alguns desses problemas que surgiram (ou reaparecem) com o uso de algoritmos de aprendizado de máquina para mineração de dados. Mais especificamente, nos concentramos seguintes problemas: Novas abordagens para a geração de regras. Dentro dessa categoria, propomos dois novos métodos para o aprendizado de regras. No primeiro, propomos um novo método para gerar regras de exceção a partir de regras gerais. No segundo, propomos um algoritmo para a seleção de regras denominado Roccer. Esse algoritmo é baseado na análise ROC. Regras provêm de um grande conjunto externo de regras e o algoritmo proposto seleciona regras baseado na região convexa do gráfico ROC. Proporção de exemplos entre as classes. Investigamos vários aspectos relacionados a esse tópico. Primeiramente, realizamos uma série de experimentos em conjuntos de dados artificiais com o objetivo de testar nossa hipótese de que o grau de sobreposição entre as classes é um fator complicante em conjuntos de dados muito desbalanceados. Também executamos uma extensa análise experimental com vários métodos (alguns deles propostos neste trabalho) para balancear artificialmente conjuntos de dados desbalanceados. Finalmente, investigamos o relacionamento entre classes desbalanceadas e pequenos disjuntos, e a influência da proporção de classes no processo de rotulação de exemplos no algoritmo de aprendizado de máquina semi-supervisionado Co-training. Novo método para a combinação de rankings. Propomos um novo método, chamado BordaRank, para construir ensembles de rankings baseado no método de votação borda count. BordaRank pode ser aplicado em qualquer problema de ordenação binária no qual vários rankings estejam disponíveis. Resultados experimentais mostram uma melhora no desempenho com relação aos rankings individuais, alem de um desempenho comparável com algoritmos mais sofisticados que utilizam a predição numérica, e não rankings, para a criação de ensembles para o problema de ordenação binária. / Machine learning algorithms are often the most appropriate algorithms for a great variety of data mining applications. However, most machine learning research to date has mainly dealt with the well-circumscribed problem of finding a model (generally a classifier) given a single, small and relatively clean dataset in the attribute-value form, where the attributes have previously been chosen to facilitate learning. Furthermore, the end-goal is simple and well-defined, such as accurate classifiers in the classification problem. Data mining opens up new directions for machine learning research, and lends new urgency to others. With data mining, machine learning is now removing each one of these constraints. Therefore, machine learning's many valuable contributions to data mining are reciprocated by the latter's invigorating effect on it. In this thesis, we explore this interaction by proposing new solutions to some problems due to the application of machine learning algorithms to data mining applications. More specifically, we contribute to the following problems. New approaches to rule learning. In this category, we propose two new methods for rule learning. In the first one, we propose a new method for finding exceptions to general rules. The second one is a rule selection algorithm based on the ROC graph. Rules come from an external larger set of rules and the algorithm performs a selection step based on the current convex hull in the ROC graph. Proportion of examples among classes. We investigated several aspects related to this issue. Firstly, we carried out a series of experiments on artificial data sets in order to verify our hypothesis that overlapping among classes is a complicating factor in highly skewed data sets. We also carried out a broadly experimental analysis with several methods (some of them proposed by us) that artificially balance skewed datasets. Our experiments show that, in general, over-sampling methods perform better than under-sampling methods. Finally, we investigated the relationship between class imbalance and small disjuncts, as well as the influence of the proportion of examples among classes in the process of labelling unlabelled cases in the semi-supervised learning algorithm Co-training. New method for combining rankings. We propose a new method called BordaRanking to construct ensembles of rankings based on borda count voting, which could be applied whenever only the rankings are available. Results show an improvement upon the base-rankings constructed by taking into account the ordering given by classifiers which output continuous-valued scores, as well as a comparable performance with the fusion of such scores.
|
15 |
An Exploration of the Relationship between Institutional Financial Resources and Global RankingAnderson, Matthew S. 14 March 2018 (has links)
Global rankings are a popular way for governments, HEI’s, faculty, staff, and students to compare institutions worldwide, therefore it is important to rank well. However, in order to have top-quality research and education programs, HEI’s need to have significant financial resources. The purpose of this study was to explore the relationship between an institution’s financial resources and its global ranking. The results of this study provide additional insight and a better understanding of global rankings and the nature of the relationship between various financial resources and global rankings.
This was a quantitative study that used ranking data from the Academic Ranking of World Universities (ARWU) and Times Higher Education (THE) World University Rankings, as well as financial data from IPEDS. Descriptive statistics were presented to develop an awareness of the data set characteristics. Linear regression and the Pearson Product-Moment Correlation Coefficient (PPMCC) were reported to gauge the strength of the relationship between the financial resource independent variables and the global ranking dependent variables.
This study indicated there was a strong relationship between an institution’s financial resources and its global ranking as there was a strong positive correlation between total revenue and an institution’s global ranking. In addition, the study showed that institutions should continue to self-generate financial resources, such as tuition revenue and research funding. This is especially true for research funding as it had the strongest relationship with ranking, which means institutions would be wise to continue focusing on investing in their research programs. This study also showed that some financial variables such as endowment size and state appropriation only had weak to moderate relationships with the global rankings.
Based on this study, one could conclude then that global rankings are influenced by money, which supports the claims of critics that university rankings are biased. Thus, institutions will continue to be challenged to find some balance between investing in what global rankings measure while also maintaining other initiatives that address their core missions but are not counted in the rankings.
|
16 |
"Novas abordagens em aprendizado de máquina para a geração de regras, classes desbalanceadas e ordenação de casos" / "New approaches in machine learning for rule generation, class imbalance and rankings"Ronaldo Cristiano Prati 07 July 2006 (has links)
Algoritmos de aprendizado de máquina são frequentemente os mais indicados em uma grande variedade de aplicações de mineração dados. Entretanto, a maioria das pesquisas em aprendizado de máquina refere-se ao problema bem definido de encontrar um modelo (geralmente de classificação) de um conjunto de dados pequeno, relativamente bem preparado para o aprendizado, no formato atributo-valor, no qual os atributos foram previamente selecionados para facilitar o aprendizado. Além disso, o objetivo a ser alcançado é simples e bem definido (modelos de classificação precisos, no caso de problemas de classificação). Mineração de dados propicia novas direções para pesquisas em aprendizado de máquina e impõe novas necessidades para outras. Com a mineração de dados, algoritmos de aprendizado estão quebrando as restrições descritas anteriormente. Dessa maneira, a grande contribuição da área de aprendizado de máquina para a mineração de dados é retribuída pelo efeito inovador que a mineração de dados provoca em aprendizado de máquina. Nesta tese, exploramos alguns desses problemas que surgiram (ou reaparecem) com o uso de algoritmos de aprendizado de máquina para mineração de dados. Mais especificamente, nos concentramos seguintes problemas: Novas abordagens para a geração de regras. Dentro dessa categoria, propomos dois novos métodos para o aprendizado de regras. No primeiro, propomos um novo método para gerar regras de exceção a partir de regras gerais. No segundo, propomos um algoritmo para a seleção de regras denominado Roccer. Esse algoritmo é baseado na análise ROC. Regras provêm de um grande conjunto externo de regras e o algoritmo proposto seleciona regras baseado na região convexa do gráfico ROC. Proporção de exemplos entre as classes. Investigamos vários aspectos relacionados a esse tópico. Primeiramente, realizamos uma série de experimentos em conjuntos de dados artificiais com o objetivo de testar nossa hipótese de que o grau de sobreposição entre as classes é um fator complicante em conjuntos de dados muito desbalanceados. Também executamos uma extensa análise experimental com vários métodos (alguns deles propostos neste trabalho) para balancear artificialmente conjuntos de dados desbalanceados. Finalmente, investigamos o relacionamento entre classes desbalanceadas e pequenos disjuntos, e a influência da proporção de classes no processo de rotulação de exemplos no algoritmo de aprendizado de máquina semi-supervisionado Co-training. Novo método para a combinação de rankings. Propomos um novo método, chamado BordaRank, para construir ensembles de rankings baseado no método de votação borda count. BordaRank pode ser aplicado em qualquer problema de ordenação binária no qual vários rankings estejam disponíveis. Resultados experimentais mostram uma melhora no desempenho com relação aos rankings individuais, alem de um desempenho comparável com algoritmos mais sofisticados que utilizam a predição numérica, e não rankings, para a criação de ensembles para o problema de ordenação binária. / Machine learning algorithms are often the most appropriate algorithms for a great variety of data mining applications. However, most machine learning research to date has mainly dealt with the well-circumscribed problem of finding a model (generally a classifier) given a single, small and relatively clean dataset in the attribute-value form, where the attributes have previously been chosen to facilitate learning. Furthermore, the end-goal is simple and well-defined, such as accurate classifiers in the classification problem. Data mining opens up new directions for machine learning research, and lends new urgency to others. With data mining, machine learning is now removing each one of these constraints. Therefore, machine learning's many valuable contributions to data mining are reciprocated by the latter's invigorating effect on it. In this thesis, we explore this interaction by proposing new solutions to some problems due to the application of machine learning algorithms to data mining applications. More specifically, we contribute to the following problems. New approaches to rule learning. In this category, we propose two new methods for rule learning. In the first one, we propose a new method for finding exceptions to general rules. The second one is a rule selection algorithm based on the ROC graph. Rules come from an external larger set of rules and the algorithm performs a selection step based on the current convex hull in the ROC graph. Proportion of examples among classes. We investigated several aspects related to this issue. Firstly, we carried out a series of experiments on artificial data sets in order to verify our hypothesis that overlapping among classes is a complicating factor in highly skewed data sets. We also carried out a broadly experimental analysis with several methods (some of them proposed by us) that artificially balance skewed datasets. Our experiments show that, in general, over-sampling methods perform better than under-sampling methods. Finally, we investigated the relationship between class imbalance and small disjuncts, as well as the influence of the proportion of examples among classes in the process of labelling unlabelled cases in the semi-supervised learning algorithm Co-training. New method for combining rankings. We propose a new method called BordaRanking to construct ensembles of rankings based on borda count voting, which could be applied whenever only the rankings are available. Results show an improvement upon the base-rankings constructed by taking into account the ordering given by classifiers which output continuous-valued scores, as well as a comparable performance with the fusion of such scores.
|
17 |
Cidades inteligentes: proposta de um modelo brasileiro multi-ranking de classificação / Smart cities: proposal of a brazilian multi-ranking classification model.José Geraldo de Araujo Guimarães 04 May 2018 (has links)
A urbanização acentuada, fenômeno crescente das últimas décadas, tem atingido níveis elevadíssimos e criado enormes desafios para a gestão das cidades, além de trazer uma vasta gama de efeitos nefastos para a qualidade de vida de seus cidadãos. Dados da ONU de 2016, indicam tratar-se de um caminho sem volta, com uma tendência de agravamento nos próximos anos. Para tentar mitigar esta situação, muito se tem discutido em como aumentar o nível de inteligência das cidades e o interesse pelo tema Cidades Inteligentes tem crescido. Apesar disso, ainda não existe consenso sobre um conceito de cidade inteligente. Se há tempos este conceito se baseava exclusivamente no pilar da tecnologia, hoje uma visão mais evoluída e holística incorpora várias outras dimensões. Já a maioria dos modelos de classificação existentes são estrangeiros e não são aderentes à realidade de um país tão diverso e tão desigual quanto o Brasil. No âmbito nacional, existem algumas iniciativas de criação de conceitos e de modelos de classificação, mas, ou são baseados unicamente no componente tecnológico, ou buscam apenas a criação de rankings tradicionais baseados em ponderações arbitrárias de seus formuladores. A dificuldade de adequação do conceito e dos modelos de classificação à realidade brasileira foram os dois motores principais desta tese. O primeiro objetivo foi desenvolver um conceito de cidade inteligente para o contexto brasileiro. O segundo foi propor um modelo multidimensional de classificação, que fugisse aos padrões tradicionais de um ranking e fosse um instrumento efetivo de aprendizagem, benchmarking e de apoio ao planejamento de políticas públicas das cidades. Por meio de um estudo exploratório e descritivo, junto a 3 cidades de portes diferentes do estado de São Paulo, foram desenvolvidas pesquisas de abordagem quantitativa e qualitativa. A primeira utilizou questionários fechados e levantamento de dados em bases de indicadores específicos para o cálculo dos componentes do Índice Brasileiro Multidimensional de Classificação de Cidades Inteligentes - IBMCCI. Este produto final da tese emprega a mesma abordagem orientada ao usuário do U-MULTIRANK, o ranking multidimensional global de universidades da Comunidade Europeia. A versão final do modelo proposto foi disponibilizada para uso dos gestores municipais com a liberdade de seleção das dimensões, dos indicadores e dos municípios equivalentes para análise. A abordagem qualitativa da pesquisa foi conduzida por meio de entrevistas semiestruturadas, junto a 2 especialistas em gestão municipal. Para validar a ferramenta construída utilizou-se a técnica de validação de conteúdo. Chegou-se à conclusão que é necessário ajustar alguns fatores do modelo e adequar a periodicidade de edição do índice para coincidir com o calendário das eleições municipais. Com estas adequações, o IBMCCI demonstrou grande potencial de se tornar uma ferramenta efetiva de apoio para os formuladores de políticas públicas municipais. / The strong urbanization, a phenomenon that has increased in recent decades, has reached a very high level and has created enormous challenges for the management of cities, as well as bringing a wide range of harmful effects to the quality of life of its citizens. UN data of 2016 indicates that this is one-way road, and it\'s forecast to be worse in the coming years. Trying to mitigate this situation, much has been discussed about how to increase the smartness level of the cities and the interest in subject of Smart Cities has grown. Despite this, there is still no consensus on a smart city concept. If for some time this concept was based exclusively on the pillar of technology, today a more evolved and holistic vision would incorporate several other dimensions. Most of the existing classification models are foreign and are not adherent to the reality of a country as diverse and as unequal as Brazil. At the national level, there are some initiatives to create concepts and classification models, but they are based solely on the technological component or they only seek to create traditional rankings based on arbitrary weights of their formulators. The difficulty of adapting the concepts and the classification models to the Brazilian reality were the two main engines of this thesis. The first aim was to develop a concept of Smart cities for the Brazilian context. The second one was to propose a multidimensional classification model, which would escape the traditional standards of a ranking and be an effective tool for learning, benchmarking and supporting the planning of public policies in cities. By means of an exploratory and descriptive study, along with 3 cities of different sizes of the state of São Paulo, research into quantitative and qualitative approaches were developed. The first one used close ended questionnaires and data collection based on specific indicators for the calculation of the components of the Brazilian Multidimensional Smart Cities Classification Index (IBMCCI). This final thesis product employs the same user-oriented approach as U-MULTIRANK, the multidimensional global ranking of European Community universities. The final version of the proposed model was made available for use by municipal managers with the freedom to select dimensions, indicators and equivalent municipalities for analysis. The qualitative approach of the research was conducted through semi-structured interviews, with 2 specialists in municipal management. In order to validate the built tool, the content validity technique was used. It has come to the conclusion that it is necessary to adjust some factors of the model and to adapt the periodicity of edition of the index to coincide with the calendar of the municipal elections. With these adaptations, the IBMCCI has demonstrated great potential to become an effective support tool for municipal public policy makers.
|
18 |
A Comparison of Selected Arkansas North Central Association Secondary Schools Using the Evaluative CriteriaRobbins, Homer Dale 08 1900 (has links)
The purpose of this study was to report the evaluation ratings and describe the Arkansas NCA secondary schools, as indicated in the Summary Reports of the Evaluative Criteria, 1960 edition, and to compare ratings on all sections and divisions, section D-J, by size classifications.
|
19 |
How Can we Derive Consensus Among Various Rankings of Marketing Journals?Theußl, Stefan, Reutterer, Thomas, Hornik, Kurt 15 October 2010 (has links) (PDF)
The identification of high quality journals often serves as a basis for the assessment of research contributions. In this context rankings have become an increasingly popular vehicle to decide upon incentives for researchers, promotions, tenure or even library budgets. These rankings are typically based on the judgments of peers or domain experts or scientometric methods (e.g., citation frequencies, acceptance rates). Depending on which (combination) of these ranking approaches is followed, the outcome leads to more or less diverging results. This paper addresses the issue on how to construct suitable aggregate (subsets) of these rankings. We present an optimization based consensus ranking approach and apply the proposed
method to a subset of marketing-related journals from the Harzing Journal Quality List. Our results show that even though journals are not uniformly ranked it is possible to derive a consensus ranking with considerably high agreement among the individual rankings. In addition,
we explore regional differences in consensus rankings. / Series: Research Report Series / Department of Statistics and Mathematics
|
20 |
Three Essays on Corporate Social Responsibility (CSR)Yang, Ruoke January 2019 (has links)
This dissertation presents three essays in financial economics with regards to corporate social responsibility and ratings. The first essay develops the first model for the CSR rating agency who has incentives to shirk while the rated firms have incentives to manipulate information through deceptive public relations (greenwash). Depending on the size of the socially responsible investor base and its composition, three possible regimes can be inferred from the model. The first one is where the rating agency is catering to mainly a large group of sophisticated SR investors who compensate the rating agency for the value of information. The second one is where the rating agency is catering to mainly a large group of trusting SR investors who compensate the rating agency for the value of institutional certification. In either of these two regimes, the weight of the large group of SR investors should generate higher market valuations for higher-rated firms that motivate firm managers to perform greenwashing. The third regime is where there are just too few SR investors to justify the effort to produce informative signals and to drive apart market valuations for rated firms.
The second essay investigates the empirical predictions of the model described in the first essay. I challenge the conventional wisdom of commercial CSR ratings being informative in a first attempt to understand how this ratings market operates. Using a novel difference-in-difference identification strategy, I show ratings significantly decreased for firms targeted by a regulatory crackdown on informational manipulation that inflates ratings. I find that better environmental ratings predict worse future corporate behavior via a novel set of benchmarks (i.e. penalties, lawsuits, and media coverage) while neither environmental nor social ratings appear to offer incremental predictive value beyond size and other standard firm characteristics. Higher-rated firms are associated with higher market valuations relative to their lower-rated counterparts. My findings point to a world in which the ratings business is primarily catering to a large group of trusting investors who buy ratings not for the value of information but for the value of institutional certification.
The third essay examines the ratings of a recently emerged rating agency competitor and find its ratings are of no better predictive quality. I introduce a novel set of measures, `corporate badness (CB) ratings', for corporate environmental and social performance. In contrast to the leading commercial ratings, worse CB ratings correctly predict more future corporate bad behavior out-of-sample. These CB ratings provide a way to study ratings disagreement, which can be used to disentangle greenwashing from the other information contained in the leading commercial CSR ratings.
|
Page generated in 0.0755 seconds