1 |
Characterization of B-Fields Effects on Late-Time Rayleigh-Taylor GrowthBarbeau, Zoe 01 January 2020 (has links)
The intent of this thesis is to simulate the effect of a background magnetic field on Rayleigh-Taylor (RT) instability morphology and evolution in support of a Discovery Science campaign at the National Ignition Facility. The RT instability is relevant in High Energy Density (HED) systems including supernova remnants such as the Crab Nebula and inertial fusion confinement (ICF). Magnetic fields affect RT evolution and can suppress small-scale fluid motion. Thus far no experimental work has quantified the effect of a B-field on RT evolution morphology. RT evolution under a B-field was examined in three-dimensional magnetohydrodynamic (MHD) simulations using the hydrocode ARES, developed by Lawrence Livermore National Laboratory. The parameter space of the experiment is explored to determine the parameters that yield a visible effect on RT evolution. The effect of resistive MHD and conductivity is examined to further establish the desired parameter space to observe the suppression of RT morphology.
|
2 |
Etude et modélisation de la turbulence homogène stratifiée instable / Study and modelling of unstably stratified homogeneous turbulenceBurlot, Alan 09 December 2015 (has links)
Cette thèse est consacrée à l’étude de la turbulence homogène stratifiée instable, un écoulement idéalisé décrivant l’évolution de la turbulence au sein d’une zone de mélange de type Rayleigh-Taylor. Cette approche se concentre sur l’évolution des quantités fluctuantes ;l’influence de l’écoulement moyen est prise en compte au travers d’un gradient moyen de densité. Un modèle spectral est utilisé pour étudier cette turbulence, conjointement à des simulations numériques directes. En comparaison avec ces simulations, l’étape de validation du modèle met en lumière le rôle des termes de stratification sur la dynamique du transfert d’énergie. Une première étude montre l’établissement, dans l’état autosemblable, de lois d’échelles ainsi que l’influence de la distribution initiale d’énergie sur l’état asymptotique et sur l’anisotropie de l’écoulement. Dans une seconde étude, la rétroaction de la turbulence sur le gradient moyen est introduite, dans un premier temps, afin de rapprocher la dynamique autosemblable de la turbulence homogène stratifiée instable de celle observée en turbulence Rayleigh-Taylor. Dans un second temps, l’influence d’un renversement de la stratification sur la dynamique du mélange est étudiée au travers d’un profil d’accélération variable. / This thesis is dedicated to the study of unstably stratified homogeneous turbulence.This flow is an idealized framework introduced to investigate the turbulence developing at the centerline of a Rayleigh-Taylor mixing zone. This approach focuses on turbulent quantities, when the mean flow acts on the turbulent field through a mean density gradient.A spectral model and direct numerical simulations are used to study this turbulent flow.The validation step reveals the role of stratification terms on the energy transfer dynamic.Then, a first study shows the emergence of scaling laws in the self-similar state, together with the large scale energy distribution impact on the asymptotic state and on the flow anisotropy. In a second study, the turbulent retroaction on the mean density gradient is introduced in order to bring unstably stratified homogeneous turbulence closer to theRayleigh-Taylor turbulence dynamics. This step leads to investigate the consequences of a stratification inversion on the mixing dynamics through a variable acceleration profile.
|
3 |
Simultaneous and instantaneous measurement of velocity and density in rayleigh-taylor mixing layersKraft, Wayne Neal 15 May 2009 (has links)
There are two coupled primary objectives for this study of buoyancy-driven turbulence.
The first objective is to create a new diagnostic for collection of measurements to capture the
physics of Rayleigh-Taylor (RT) mixing. The second objective is to use the new diagnostic to
specifically elucidate the physics of large Atwood number, ( )( )2 1 2 1 / ρ ρ ρ ρ + − = t A , RT
mixing. Both of these objectives have been satisfied through the development of a new hot-wire
diagnostic to study buoyancy-driven turbulence in a statistically steady gas channel of helium
and air ( 6 . 0 03 . 0 ≤ ≤ t A ). The capability of the diagnostic to simultaneously and instantaneously
measure turbulent velocity and density fluctuations allows for a unique investigation into the
dynamics of Rayleigh-Taylor mixing layers at large At, through measurements of turbulence and
mixing statistics. The new hot-wire diagnostic uses temperature as a fluid marker for helium and
air, which is possible due to the Lewis number ~ 1 (Le = ratio of thermal diffusivity to mass
diffusivity) for helium and air, and the new diagnostic has been validated in an At = 0.03 mixing
layer. The energy density spectrum of v′ ′ ρ , measured experimentally for the first time in RT
mixing, is found to closely follow the energy distribution of v′ , up to the Reynolds numbers investigated ( ( ) mix t h gA h υ 6 2 Re 2 / 3 = ~ 1450). Large At experiments, with At = 0.6, have
also been achieved for the first time in a miscible RT mixing layer. An asymmetric penetration
of the bubbles (rising fluid) and spikes (falling fluid) has been observed, resulting in measured
self similar growth parameters αb = 0.060 and αs = 0.088 for the bubbles and spikes, respectively.
The first experimental measurements of turbulent velocity and density fluctuations for the large
At case, show a strong similarity to lower At behaviors when normalized. However conditional
statistics, which separate the bubble (light fluid) and spike (heavy fluid) dynamics, has
highlighted differences in v′ ′ ρ and rms v′ in the bubbles and spikes. Larger values of v′ ′ ρ and
rms v′ were found in the downward falling spikes, which is consistent with the larger growth rates
and momentum of the spikes compared to the bubbles. These conditional statistics are a first in
RT driven turbulence.
|
4 |
Experimental and Numerical Study of Molecular Mixing Dynamics in Rayleigh- Taylor Unstable FlowsMueschke, Nicholas J. 16 January 2010 (has links)
Experiments and simulations were performed to examine the complex processes that
occur in Rayleigh�Taylor driven mixing. A water channel facility was used to examine
a buoyancy-driven Rayleigh�Taylor mixing layer. Measurements of �uctuating den-
sity statistics and the molecular mixing parameter were made for Pr = 7 (hot/cold
water) and Sc 103 (salt/fresh water) cases. For the hot/cold water case, a high-
resolution thermocouple was used to measure instantaneous temperature values that
were related to the density �eld via an equation of state. For the Sc 103 case, the
degree of molecular mixing was measured by monitoring a di�usion-limited chemical
reaction between the two �uid streams. The degree of molecular mixing was quanti-
�ed by developing a new mathematical relationship between the amount of chemical
product formed and the density variance 02. Comparisons between the Sc = 7 and
Sc 103 cases are used to elucidate the dependence of on the Schmidt number.
To further examine the turbulent mixing processes, a direct numerical simu-
lation (DNS) model of the Sc = 7 water channel experiment was constructed to
provide statistics that could not be experimentally measured. To determine the key
physical mechanisms that in�uence the growth of turbulent Rayleigh�Taylor mixing
layers, the budgets of the exact mean mass fraction em1, turbulent kinetic energy fE00,
turbulent kinetic energy dissipation rate e 00, mass fraction variance gm002
1 , and mass
fraction variance dissipation rate f 00 equations were examined. The budgets of the unclosed turbulent transport equations were used to quantitatively assess the relative
magnitudes of di�erent production, dissipation, transport, and mixing processes.
Finally, three-equation (fE00-e 00-gm002
1 ) and four-equation (fE00-e 00-gm002
1 -f 00) turbulent
mixing models were developed and calibrated to predict the degree of molecular mix-
ing within a Rayleigh�Taylor mixing layer. The DNS data sets were used to assess
the validity of and calibrate the turbulent viscosity, gradient-di�usion, and scale-
similarity closures a priori. The modeled transport equations were implemented in a
one-dimensional numerical simulation code and were shown to accurately reproduce
the experimental and DNS results a posteriori. The calibrated model parameters
from the Sc = 7 case were used as the starting point for determining the appropri-
ate model constants for the mass fraction variance gm002
1 transport equation for the
Sc 103 case.
|
5 |
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHDGao, Song 05 1900 (has links)
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are
impulsively accelerated, typically by a shock wave. We present a numerical method to
simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD
equations are linearized about a time-dependent base state to yield linear partial
differential equations governing the perturbed quantities. Convergence tests demonstrate
that second order accuracy is achieved for smooth
flows, and the order of
accuracy is between first and second order for
flows with discontinuities.
Numerical results are presented for cases of interfaces with positive Atwood number
and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov
instability growth of perturbations is followed by a Rayleigh-Taylor growth phase.
In MHD, numerical results indicate that the perturbations can be suppressed for
sufficiently large perturbation wavenumbers and magnetic fields.
|
6 |
Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical GeometryBakhsh, Abeer 13 May 2018 (has links)
We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The
interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic field. The linearized equations are solved numerically using inverse Laplace transform. The incompressible models show that the magnetic field suppresses the RMI, and the mechanism of this suppression depends on the orientation of the initially applied magnetic field. The incompressible model agrees reasonably well with compressible linear simulations.
|
7 |
Deceleration Stage Rayleigh-Taylor Instability Growth in Inertial Confinement Fusion Relevant ConfigurationsSamulski, Camille Clement 08 June 2021 (has links)
Experimental results and simulations of imploding fusion concepts have identified the Rayleigh-Taylor (RT) instability as one of the largest inhibitors to achieving fusion. Understanding the origin and development of the RT instability will allow for the development of mitigating measures to dampen the instability growth, thus improving the chance that fusion concepts such as inertial confinement fusion (ICF) are successful. A study of 1D and 2D simulations are presented for investigating RT instability growth in deceleration stage of imploding geometries. Two cases of laser-driven implosion geometry, Cartesian and cylindrical, are used to study late stage deceleration-phase RT instability development on the interior surface of imploding targets. FLASH's hydrodynamic (HD) and magnetohydrodynamic (MHD) modeling capabilities are used for different laser and target parameters in order to study the RT instability and the impact of externally applied magnetic fields on their evolution. Several simulation regimes have been identified that provide novel insight into the impact that a seeded magnetic field can have on RT instability growth and the conditions under which magnetic field stabilization of the RT instability is observable. Finally, future work and recommendations are made. / Master of Science / The direction for the future of renewable energy is uncertain at this time; however, it is known that the future of human energy consumption must be green in order to be sustainable. Fusion energy presents an opportunity for an unlimited clean renewable energy source that has yet to be realized. Fusion is achieved only by overcoming the earthly limitations presented by trying to replicate conditions at the interior of stellar structures. The pressures, temperature, and densities seen in the interior of stars are not easily reproduced, and thus human technology must be developed to reach these difficult stellar conditions in order to harvest fusion energy. There are two main branches of developmental technology geared towards achieving the difficult conditions controlled nuclear fusion presents, magnetic confinement fusion (MCF) and inertial confinement fusion (ICF)[17]. Yet in both approaches barriers exist which have thwarted the efforts toward reaching fusion ignition which must be addressed through scientific discovery. Successfully reaching ignition is only the first step in the ultimate pursuit of a self sustaining fusion reactor. This work will focus on the experimental ICF configuration, and on one such inhibitor toward achieving ignition, the Rayleigh-Taylor (RT) instability. The RT instability develops on the surfaces of the fusion fuel capsules, targets, and causes nonuniform compression of the target. This nonuniform compression of the target leads to lower pressures and densities through the material mixing of fusion fuel and the capsule shell, which ultimately leads to challenges with reaching fusion ignition. The work presented here was performed utilizing the University of Chicago's FLASH code, which is a state-of-the-art open source radiation magneto-hydrodynamic (MHD) code used for plasma and astrophysics computational modeling [11]. Simulations of the RT instability are performed using FLASH in planar and cylindrical geometries to explore fundamental Rayleigh-Taylor instability evolution for these two different geometries. These geometries provide easier access for experimental diagnostics to probe RT dynamics. Additionally, the impact of externally applied magnetic fields are explored in an effort to examine if and how the detrimental instability can be controlled.
|
8 |
Magnetohydrodynamic Simulations of Fast Instability Development in Pulsed-Power--Driven Explosions and Implosions of Electrical ConductorsCarrier, Matthew James 21 June 2024 (has links)
Recent concepts for controlled magneto-inertial fusion (MIF), such as magnetized liner inertial fusion (MagLIF), have suffered from magnetohydrodynamic (MHD) instabilities that lead to degradations in fusion yield. High levels of azimuthally-correlated MHD instability structures have been observed on cylindrical liner experiments without a pre-imposed axial magnetic field (Bz=0) elsewhere in the literature and are believed to be seeded from surface machining roughness. This dissertation uses highly resolved (0.5 μm and less resolution) 1D and 2D resistive magnetohydrodynamics (MHD) arbitrary-Lagrangian-Eulerian (ALE) simulations of electrical wire explosions (EWEs) and liner implosions to show that micrometer-scale surface roughness seeds the electrothermal instability (ETI), which induces early melting in pockets across the conductor and leads to millimeter-scale instability growth. The relationship between the ETI and the MRTI in liner implosions is also described in this dissertation, which shows that the traditional growth rates associated with these modes are coupled together and are not linearly independent. This dissertation also describes the preliminary implementation of a Koopman neural network architecture for learning the nonlinear dynamics of a high energy density (HED) exploding or imploding electrical conductor. / Doctor of Philosophy / Researchers have been working on controlling nuclear fusion and harnessing it as a power source since the discovery that nuclear fusion powers stars. In many of these controlled nuclear fusion concepts the aim is to heat the fuel until it forms a high-temperature plasma state of matter and then compress it to the point that the atoms are close enough and at high enough speeds that they collide fuse together. In the magnetized liner inertial fusion (MagLIF) concept these temperatures, densities, and pressures are achieved by surrounding the fusion fuel with a cylindrical piece of metal called a liner and using magnetic fields to implode the liner inward. Experiments have shown, however, that these liner implosions do not occur smoothly and that the system becomes unstable and can mix liner material into the fuel, which disrupts the fusion process. This dissertation investigates the stability of liner implosions and electrical wire explosions. In particular, this dissertation shows that surface roughness imparted on the surface of a solid fusion target by a machining process can grow into a millimeter-scale perturbation. It also describes the relationship between two common types of instabilities found in current-driven nuclear fusion: the magneto-Rayleigh-Taylor instability and the electrothermal instability. Finally, it looks at using neural networks to better understand the dynamics of electrical wire explosions.
|
9 |
Experimental Investigation of the Effect of Initial Conditions on Rayleigh-Taylor InstabilityKuchibhatla, Sarat Chandra 2010 August 1900 (has links)
An experimental study of the effect of initial conditions on the development of Rayleigh Taylor Instabilities (RTI) at low Atwood numbers (order of 10-4) was performed in the water channel facility at TAMU. Initial conditions of the flow were generated using a controllable, highly reliable Servo motor. The uniqueness of the study is the system’s capability of generating the required initial conditions precisely as compared to the previous endeavors. Backlit photography was used for imaging and ensemble averaging of the images was performed to study mixing width characteristics in different regimes of evolution of Rayleigh-Taylor Instability (RTI). High-speed imaging of the flows was performed to provide insights into the growth of bubble and spikes in the linear and non-linear regime of instability development.
RTI are observed in astrophysics, geophysics and in many instances in nature. The vital role of RTI in the feasibility and efficiency of the Inertial Confinement Fusion (ICF) experiment warrants a comprehensive study of the effect of mixing characteristics of RTI and its dependence on defining parameters. With this broader objective in perspective, the objectives of this present investigation were mainly threefold: First was the validation of the novel setup of the Water channel system. Towards this objective, validation of Servo motor, splitter plate thickness effects, density and temperature measurements and single-mode experiments were performed. The second objective was to study the mixing and growth characteristics of binary and multi-mode initial perturbations seeking an explanation of behavior of the resultant flow structures by performing the first ever set of such highly controlled experiments. The first-ever set of experiments with highly controlled multi-mode initial conditions was performed. The final objective of this study was to measure and compare the bubble and spike velocities with single-mode initial conditions with existing analytical models. The data derived from these experiments would qualitatively and quantitatively enhance the understanding of dependence of mixing width on parametric initial conditions. The knowledge would contribute towards a generalized theory for RTI mixing with specified dependence on various parameters, which has a wide range of applications.
The system setup was validated to provide a reliable platform for the novel multi-modal experiments to be performed in the future. It was observed that the ensemble averaged mixing width of the binary system does not vary significantly with the phase-difference between the modes of a binary mode initial condition experiment, whereas it varies with the amplitudes of the component modes. In the exponential and non-linear regimes of evolution, growth rates of multi-mode perturbations were found to be higher than the component modes, whereas saturation growth rates correspond to the dominant wavelength. Quadratic saturation growth rate constants, alpha were found to be about 0.07 ± 0.01 for binary and multi modes whereas single-mode data measured alpha about 0.06 ± 0.01. High-speed imaging was performed to measure bubble and spike amplitudes to obtain velocities and growth rates. It was concluded that higher temporal and spatial resolution was required for accurate measurement. The knowledge gained from the above study will facilitate a better understanding of the physics underlying Rayleigh-Taylor instability. The results of this study will also help validating numerical models for simulation of this instability, thereby providing predictive capability for more complex configurations.
|
10 |
On the high fidelity simulation of chemical explosions and their interaction with solid particle cloudsBalakrishnan, Kaushik 09 June 2010 (has links)
High explosive charges when detonated ensue in a flow field characterized by several physical phenomena that include blast wave propagation, hydrodynamic instabilities, real gas effects, fluid mixing and afterburn effects. Solid metal particles are often added to explosives to augment the total impulsive loading, either through direct bombardment if inert, or through afterburn energy release if reactive. These multiphase explosive charges, termed as heterogeneous explosives, are of interest from a scientific perspective as they involve the confluence and interplay of various additional physical phenomena such as shock-particle interaction, particle dispersion, ignition, and inter-phase mass, momentum and energy transfer.
In the current research effort, chemical explosions in multiphase environments are investigated using a robust, state-of-the-art Eulerian-gas, Lagrangian-solid methodology that can handle both the dense and dilute particle regimes. Explosions into ambient air as well as into aluminum particle clouds are investigated, and hydrodynamic instabilities such as Rayleigh- Taylor and Richtmyer-Meshkov result in a mixing layer where the detonation products mix with the air and afterburn. The particles in the ambient cloud, when present, are observed to pick up significant amounts of momentum and heat from the gas, and thereafter disperse, ignite and burn. The amount of mixing and afterburn are observed to be independent of particle size, but dependent on the particle mass loading and cloud dimensions. Due to fast response times, small particles are observed to cluster as they interact with the vortex rings in the mixing layer, which leads to their preferential ignition/ combustion.
The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. Furthermore, particles are observed to introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in augmented fluctuation intensities and fireball size, and different growth rates for heterogeneous explosions compared to homogeneous explosions. For aluminized explosions, the particles are observed to burn in two regimes, and the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge. Overall, this thesis provides useful insights on the role played by solid particles in chemical explosions.
|
Page generated in 0.1117 seconds