• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cyanide and central nervous system : a study with focus on brain dopamine

Cassel, Gudrun January 1993 (has links)
The brain is a major target site in acute cyanide intoxication, as indicated by several symptoms and signs. Cyanide inhibits the enzyme cytochrome oxidase. This inhibition causes impaired oxygen utilization in all cells affected, severe metabolic acidosis and inhibited production of energy. In this thesis, some neurotoxic effects of cyanide, in particular, the effects on dopaminergic pathways were studied. In a previous study, decreased levels of striatal dopamine and HVA were found after severe cyanide intoxication (5-20 mg/kg i.p.). However, increased striatal dopamine were found in rats showing convulsions after infusion of low doses of cyanide (0.9 mg/kg i.v.), at the optimal dose rate (the dose rate that gives the treshold dose). Increased striatal dopamine synthesis was observed in rats after cyanide treatment and in vitro. Furthermore, in rat, as well as in pig striatal tissue, cyanide dose- dependently increased the oxidative deamination of 5-HT (MAO-A) and DA (MAO-A and -B) but not that of PEA (MAO-B). Thus cyanide affects both the synthesis and metabolism of dopamine. In rats, sodium cyanide (2.0 mg/kg, i.p.) decreased the striatal dopamine Dj- and D2-receptor binding 1 hour after injection. Increased extracellular levels of striatal dopamine and homovanillic acid were also shown after cyanide (2.0 mg/kg; i.p.). DOPAC and 5-HIAA were slightly decreased. This indicates an increased release or an extracellular leakage of dopamine due to neuronal damage caused by cyanide. Thus the effects of cyanide on dopamine Dj- and D2~receptors could in part be due to cyanide-induced release of dopamine. Because of reported changes in intracellular calcium in cyanide-treated animals, the effects of cyanide on inositol phospholipid breakdown was studied. Cyanide seemed not to affect the inositol phospholipid breakdown in vitro. The effects of cyanide on the synthesis and metabolism of brain GAB A were also examined. A decreased activity of both GAD and GAB A-T were found in the rat brain tissue. The reduced activity of GAB A-T, but not that of GAD returned to the control value after adding PLP in the incubation media. The cyanide-produced reduction of GABA levels will increase the susceptibility to convulsions, and could partly be due to GAD inhibition. In conclusion, cyanide affects the central nervous system in a complex manner. Some effects are probably direct. The main part, however, appears to be secondary, e.g. hypoxia, seizures, changes in calcium levels or transmitter release produced by cyanide. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1993, härtill 7 uppsatser</p> / digitalisering@umu
22

COMPUTER SIMULATION OF A HOLLOW-FIBER BIOREACTOR: HEPARAN REGULATED GROWTH FACTORS-RECEPTORS BINDING AND DISSOCIATION ANALYSIS

Zhang, Changjiang 01 January 2011 (has links)
This thesis demonstrates the use of numerical simulation in predicting the behavior of proteins in a flow environment. A novel convection-diffusion-reaction computational model is first introduced to simulate fibroblast growth factor (FGF-2) binding to its receptor (FGFR) on cell surfaces and regulated by heparan sulfate proteoglycan (HSPG) under flow in a bioreactor. The model includes three parts: (1) the flow of medium using incompressible Navier-Stokes equations; (2) the mass transport of FGF-2 using convection-diffusion equations; and (3) the cell surface binding using chemical kinetics. The model consists of a set of coupled nonlinear partial differential equations (PDEs) for flow and mass transport, and a set of coupled nonlinear ordinary differential equations (ODEs) for binding kinetics. To handle pulsatile flow, several assumptions are made including neglecting the entrance effects and an approximate analytical solution for axial velocity within the fibers is obtained. To solve the time-dependent mass transport PDEs, the second order implicit Euler method by finite volume discretization is used. The binding kinetics ODEs are stiff and solved by an ODE solver (CVODE) using Newton’s backward differencing formula. To obtain a reasonable accuracy of the biochemical reactions on cell surfaces, a uniform mesh is used. This basic model can be used to simulate any growth factor-receptor binding on cell surfaces on the wall of fibers in a bioreactor, simply by replacing binding kinetics ODEs. Circulation is an important delivery method for natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule’s fate, are difficult to interpret using traditional approaches. Growth factor capture under flow is analyzed and predicted using computer modeling mentioned above and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process is desired. The experimental module consists of a bioreactor with synthetic endotheliallined hollow fibers under flow. The physical design of the system is incorporated into the model parameters. FGF-2 is used for both the experiments and simulations. The computational model is based on the flow and reactions within a single hollow fiber and is scaled linearly by the total number of fibers for comparison with experimental results. The model predicts, and experiments confirm, that removal of heparan sulfate (HS) from the system will result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicts a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters are investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that should prove advantageous for biological or drug delivery investigations. For some complicated binding systems, where there are more growth factors or proteins with competing binding among them moving through hollow fibers of a bioreactor coupled with biochemical reactions on cell surfaces on the wall of fibers, a complex model is deduced from the basic model mentioned above. The fluid flow is also modeled by incompressible Navier-Stokes equations as mentioned in the basic model, the biochemical reactions in the fluid and on the cell surfaces are modeled by two distinctive sets of coupled nonlinear ordinary differential equations, and the mass transports of different growth factors or complexes are modeled separately by different sets of coupled nonlinear partial differential equations. To solve this computationally intensive system, parallel algorithms are devised, in which all the numerical computations are solved in parallel, including the discretization of mass transport equations and the linear system solver Stone’s Implicit Procedure (SIP). A parallel SIP solver is designed, in which pipeline technique is used for LU factorization and an overlapped Jacobi iteration technique is chosen for forward and backward substitutions. For solving binding equations ODEs in the fluid and on cell surfaces, a parallel scheme combined with a sequential CVODE solver is used. The simulation results are obtained to demonstrate the computational efficiency of the algorithms and further experiments need to be conducted to verify the predictions.
23

Molecular Characterization of Fall Armyworm (Spodoptera frugiperda) Resistant to Vip3Aa20 Protein Expressed in Corn

Fatoretto, Julio Cesar 23 October 2017 (has links)
No description available.
24

A bio-behavioural investigation into the role of the cholinergic system in stress / Ilse Groenewald

Groenewald, Ilse January 2006 (has links)
Posttraumatic stress disorder (PTSD) is an anxiety disorder that may follow exposure to severe emotional trauma and presents with various symptoms of anxiety, hyperarousal and cognitive anomalies. Interestingly, only 10-30% of an exposed population will go on to develop full-blown PTSD. Cholinergic neurotransmission is implicated in anxiety as well as other typical manifestations of PTSD, particularly cognitive changes. The frontal cortex and hippocampus regulate and in turn are affected by stress, and have also been implicated in the underlying neuropathology of PTSD. These areas are densely innervated by cholinergic neurons originating from the basal forebrain. In this study, the time dependent sensitization (TDS) model was used to induce symptoms of PTSD in animals. The study was designed to determine the long-term effects of an intense, prolonged aversive procedure on central muscarinic acetylcholine receptor (mAChR) characteristics and the correlation if any of those findings to cognitive aspects and general arousal as characteristics associated with PTSD. In order to achieve this goal, male Sprague-Dawley rats were exposed to the TDS stress paradigm with behavioral/neuro-receptor assessments performed on day 7 post re-stress (duration of each experiment in whole is 14 days). Acoustic startle reflex (ASR) was used to determine emotional state (hyperarousal), while the conditioned taste aversion (CTA) paradigm was implemented in order to assess aversive memory. Muscarinic receptor binding studies were performed in the frontal cortex and hippocampus. Moreover, both the stress-exposed and control animals were pre-tested in the acoustic startle chamber in order to attempt to separate stress sensitive from stress-resilient animals based on predetermined ASR criteria. The ASR niodel was previously validated in our laboratory, while the CTA model was validated in this project before application. In the CTA model, an i.p. injection with lithium chloride (LiCl) (associated with digestive malaise), was used as unconditioned stimulus (US) and was paired with a saccharinlcyclamate drinking solution as conditioned stimulus (CS) to induce aversion to the novel taste (CS) when presented in the absence of the US. Population data of animals tested in the ASR experiment indicated no statistical significant difference between stressed and control animals. However, when each animal was assessed individually, 22.5 % of the exposed population displayed all increase above the predetermined criteria of 35 % in startle response, indicating a state of heightened arousal. In contrast, only 4.2 O h of control animals (no stress) displayed an increase in arousal based on the above mentioned criteria. Muscarinic receptor densities (Bm,) in the total population of animals exposed to stress showed a statistical significant increase in both the hippocampus and frontal cortex when compared to controls, with no changes in & values observed in either one of the areas. In the CTA experiment, TDS stress was implemented as US paired with a saccharinlcyclamate drinking solution as CS. An acute session of prolonged stress (as used in the TDS model) effectively induced aversion to a novel taste and a subsequent reminder of the stress (restress) paired with the CS sustained the acquire adversive memory. Furthermore, LiCl was reintroduced as US in order to assess the effect of prior exposure to two types of stress (acute and TDS) on subsequently acquired CTA memory. Prior exposure to acute stress had no significant effect on subsequently acquired aversive memory when measured either 3- or 7 days post-conditioning (CS-US). Stress-restress (TDS) exposure, however, indicated a significant decrease in aversive memory from 3- to 7 days post-conditioning (CS-US) as well as a significant decrease in aversive memory between the control- and the TDS group 7 days post-conditioning. The mAChR density (B,,) in the frontal cortex; but not in the hippocampus, was elevated at the same point in time (7 days post CS-US pairing) that CTA memory was impaired following TDS stress (stress-restress). Ultimately, these data support an association between altered cholinergic receptors and hyperarousallanxiety in an animal model of PTSD. The data also support the phenomenon of individual susceptibility to stress in animals that parallels that observed in humans exposed to severe trauma. Impaired aversive memory (CTA) is a consequence of prior exposure to TDS stress, but not acute stress, and is likewise mediated by an altered central cholinergic transmission displayed as an increase in mAChRs in the frontal cortex. The lack of studies regarding the influence of the cholinergic system in PTSD related behavior earns ,this project value as inimitable PTSD research. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2007.
25

Interaction between estrogen and interferon gamma signaling pathways in the regulation of major histocompatibility complex class ii expression in breast cancer cells / Interaction entre les voies d’activation de l’estrogène et de l’interféron gamma dans la régulation de l’expression du complexe majeur d’histocompatibilité de classe ii dans des cellules de cancer du sein

Leon Machado, Jorge Alfonso January 2017 (has links)
Abstract : Activation of the antigen presentation mechanisms by cancer cells is one of the main pathways used by the immune system for tumor detection and suppression. Induction of the expression of molecules of the Major Histocompatibility complex class II (MHC-II) by the interferon- (IFN) is important for the efficient presentation of tumor antigens. Nevertheless, it has been observed that expression of these molecules is supressed in tissular contexts where the concentration of estradiol (E2) is high. In this work we attempted to explain if the down-regulation exerted by estradiol on the expression of the MHC-II molecules in breast cancer cells was mediated by a silencing effect of the estrogen receptor- (ER) through a possible estrogen receptor binding site (ERBS) in the locus of promoter IV (pIV) of the master regulator of MHC-II expression, the class II transactivator (CIITA). The breast cancer cell line MDA-MB-231 (ER-/ERβ-) and its stable transfectants MC2 (ER+) and VC5 (empty vector) were used as model cell lines. Expression of the MCH-II molecules is controlled by CIITA, and stimulation with IFN activates the transcription of the pIV of CIITA. Stimulation of these cell lines with IFN induced expression of the MCH-II molecules and addition of E2 repressed such expression only in the MC2 cell line, as observed by flow cytometry analysis. Six other breast cancer cell lines were tested, with only the MCF7 cell line showing a significant inhibition. Then we analyzed if the inhibition of the MHC-II expression was due to a down-regulation of CIITA. Protein analysis performed by western blot and mRNA quantification by RT-qPCR both revealed down-regulation of CIITA in the cells exposed to IFN+E2 compared to those treated only with IFN. However, reporter gene analysis did not demonstrate any influence of our candidate ERBS in the inhibition of the activation of CIITA-pIV. ChIP-seq analysis of the VC5 and MC2 cell lines for ER also failed to demonstrate any binding of the receptor anywhere in the vicinity of the CIITA locus. However gene ontology and disease ontology analysis of the sequencing data showed a higher activation of tumorigenic cellular pathways in the cells treated with IFN + E2 than in the cells treated only with E2. These results suggest that activation of the inflammatory pathways by IFN could exert a detrimental effect on the cancer development. / Résumé : L’activation des mécanismes de présentation antigénique par les cellules cancéreuses est l’une des voies principales employées par le système immunitaire pour la détection et la suppression des tumeurs. L’induction de l’expression de molécules du complexe majeur d’histocompatibilité de classe II (CMH-II) par l’interféron- (IFN) est importante pour la présentation efficace des antigènes tumoraux. Cependant, il a été observé que l’expression de ces molécules est supprimée dans certains tissus dans lesquels la concentration d’estradiol (E2) est élevée. Dans ce travail, nous avons tenté de déterminer si l’inhibition exercée par l’estrogène (E2) sur l'expression des molécules du CMH-II dans des cellules de cancer du sein est médiée par un effet de silençage du récepteur de l’estrogène- (ER) à travers d’un possible site de liaison de récepteur d'estrogène (ERBS) dans le locus du promoteur IV du régulateur clé de l’expression du CMH-II, CIITA. La lignée cancéreuse mammaire cellulaire de cancer de sein MDA-MB-231 (ER-/ERβ-) et ses transfectants stables MC2 (ER+) et VC5 (vecteur vide) ont été utilisés comme des lignées cellulaires modèles. L'expression des molécules du CMH-II est contrôlée par CIITA, et la stimulation avec l’IFN active la transcription du pIV de CIITA. La stimulation de ces lignées cellulaires avec l’IFN induit l'expression des molécules du CMH-II et l'addition d’E2 réprime de cette expression seulement dans la lignée cellulaire MC2, telle qu'elle est observée par analyse de cytométrie de flux. Six autres lignées de cancer de sein ont été testées et seulement la lignée cellulaire MCF7 montrait une inhibition significative. Ensuite, nous avons analysé si l'inhibition de l'expression du CMH-II était due à une régulation de CIITA. L'analyse des protéines effectuée par Western blot et la quantification de l'ARNm par RT-qPCR quantitative ont révélé une inhibition de CIITA dans les cellules exposées à l’IFN + E2 par rapport à celles traitées seulement avec l’IFN. Cependant, des analyses avec un gène rapporteur n'ont pas démontré une influence quelconque de notre site de liaison de récepteur d'estrogène candidat dans l'inhibition de l'activation de CIITA-pIV. Des analyses de ChIP-seq dans les lignées cellulaires MC2 et VC5 pour l’ER n’ont également pas démontré la présence d’une liaison du récepteur dans le voisinage du locus de CIITA. Cependant, des analyses sur l'ontologie des gènes et des maladies sur les données de séquençage ont montré une activation accrue des voies cellulaires cancéreuses dans les cellules traitées avec IFN + E2 comparé avec les cellules traitées uniquement avec E2. Ces résultats suggèrent que l'activation des voies inflammatoires par l’IFN pourrait exercer un effet plus négatif qu’anticipé sur le développement du cancer. [Symboles non conformes]
26

Development of <i>in vitro</i> and <i>ex vivo</i> positron-emitting tracer techniques and their application to neurotrauma

Sihver, Sven January 2000 (has links)
<p>The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradioradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possib with thinner sections.</p><p>An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of [<sup>11</sup>C]4-NMPB, a muscarinic acetylcholine (mACh) receptor antagonist, to the M4 subtype of mACh receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACh receptors, suggested lack of subtype selectivity. With respect to the possible cliinical use in glutamatergic neuropathology, [<sup>11</sup>C]cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The <i>in vivo</i> visualization of specific binding could not be achieved, though <i>in vitro</i> binding demonstrated good specificity and preferential binding to the activated for of the NMDA receptors.</p><p>The use of the glucose analogue [<sup>18</sup>F]fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of [1-<sup>14</sup>C]glucose remained unchanged. This discrepancy might be due to the increased postraumatic affinity of FDG for the endothelial glucose transporter proteins and/or to the hexokinase enzyme. [<sup>11</sup>C]Cyano-dizocilpine, [<sup>11</sup>C]4-NMPB, and [<sup>11</sup>C]flumazenil were utilized in autoradiography to evaluate changes in NMDA, mACh, and GABA<sub>A</sub> receptors, espectively, in experimental TBI. Observations showed a global decrease in the binding potential BP) of (i) [<sup>11</sup>C]cyano-dizocilpine acutely and 12 hrs after TBI, and (ii) of [<sup>11</sup>C]4-NMPB at 12 hrs after TBI, and (iii) a decrease in the BP of [<sup>11</sup>C]flumazenil in the cortex and hippocampus ipsilateral to the site of injury. The demonstrated changes in receptor binding after TBI are indicative of a widely dissipated effect of TBI on the particular neurotransmitter receptor systems as compared with what would be expected from FDG studies after TBI, i.e., a local disturbed neurotransmission.</p>
27

A bio-behavioural investigation into the role of the cholinergic system in stress / Ilse Groenewald

Groenewald, Ilse January 2006 (has links)
Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2007.
28

Development of in vitro and ex vivo positron-emitting tracer techniques and their application to neurotrauma

Sihver, Sven January 2000 (has links)
The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradioradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possib with thinner sections. An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of [11C]4-NMPB, a muscarinic acetylcholine (mACh) receptor antagonist, to the M4 subtype of mACh receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACh receptors, suggested lack of subtype selectivity. With respect to the possible cliinical use in glutamatergic neuropathology, [11C]cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The in vivo visualization of specific binding could not be achieved, though in vitro binding demonstrated good specificity and preferential binding to the activated for of the NMDA receptors. The use of the glucose analogue [18F]fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of [1-14C]glucose remained unchanged. This discrepancy might be due to the increased postraumatic affinity of FDG for the endothelial glucose transporter proteins and/or to the hexokinase enzyme. [11C]Cyano-dizocilpine, [11C]4-NMPB, and [11C]flumazenil were utilized in autoradiography to evaluate changes in NMDA, mACh, and GABAA receptors, espectively, in experimental TBI. Observations showed a global decrease in the binding potential BP) of (i) [11C]cyano-dizocilpine acutely and 12 hrs after TBI, and (ii) of [11C]4-NMPB at 12 hrs after TBI, and (iii) a decrease in the BP of [11C]flumazenil in the cortex and hippocampus ipsilateral to the site of injury. The demonstrated changes in receptor binding after TBI are indicative of a widely dissipated effect of TBI on the particular neurotransmitter receptor systems as compared with what would be expected from FDG studies after TBI, i.e., a local disturbed neurotransmission.
29

Anwendung der Fluoreszenz-Korrelations-Spektroskopie zur Untersuchung dynamischer Prozesse in lebenden Zellen / Application of fluorescence correlation spectroscopy to investigate dynamic processes in living cells

Jordan, Randolf 31 October 2000 (has links)
No description available.
30

A bio-behavioural investigation into the role of the cholinergic system in stress / Ilse Groenewald

Groenewald, Ilse January 2006 (has links)
Posttraumatic stress disorder (PTSD) is an anxiety disorder that may follow exposure to severe emotional trauma and presents with various symptoms of anxiety, hyperarousal and cognitive anomalies. Interestingly, only 10-30% of an exposed population will go on to develop full-blown PTSD. Cholinergic neurotransmission is implicated in anxiety as well as other typical manifestations of PTSD, particularly cognitive changes. The frontal cortex and hippocampus regulate and in turn are affected by stress, and have also been implicated in the underlying neuropathology of PTSD. These areas are densely innervated by cholinergic neurons originating from the basal forebrain. In this study, the time dependent sensitization (TDS) model was used to induce symptoms of PTSD in animals. The study was designed to determine the long-term effects of an intense, prolonged aversive procedure on central muscarinic acetylcholine receptor (mAChR) characteristics and the correlation if any of those findings to cognitive aspects and general arousal as characteristics associated with PTSD. In order to achieve this goal, male Sprague-Dawley rats were exposed to the TDS stress paradigm with behavioral/neuro-receptor assessments performed on day 7 post re-stress (duration of each experiment in whole is 14 days). Acoustic startle reflex (ASR) was used to determine emotional state (hyperarousal), while the conditioned taste aversion (CTA) paradigm was implemented in order to assess aversive memory. Muscarinic receptor binding studies were performed in the frontal cortex and hippocampus. Moreover, both the stress-exposed and control animals were pre-tested in the acoustic startle chamber in order to attempt to separate stress sensitive from stress-resilient animals based on predetermined ASR criteria. The ASR niodel was previously validated in our laboratory, while the CTA model was validated in this project before application. In the CTA model, an i.p. injection with lithium chloride (LiCl) (associated with digestive malaise), was used as unconditioned stimulus (US) and was paired with a saccharinlcyclamate drinking solution as conditioned stimulus (CS) to induce aversion to the novel taste (CS) when presented in the absence of the US. Population data of animals tested in the ASR experiment indicated no statistical significant difference between stressed and control animals. However, when each animal was assessed individually, 22.5 % of the exposed population displayed all increase above the predetermined criteria of 35 % in startle response, indicating a state of heightened arousal. In contrast, only 4.2 O h of control animals (no stress) displayed an increase in arousal based on the above mentioned criteria. Muscarinic receptor densities (Bm,) in the total population of animals exposed to stress showed a statistical significant increase in both the hippocampus and frontal cortex when compared to controls, with no changes in & values observed in either one of the areas. In the CTA experiment, TDS stress was implemented as US paired with a saccharinlcyclamate drinking solution as CS. An acute session of prolonged stress (as used in the TDS model) effectively induced aversion to a novel taste and a subsequent reminder of the stress (restress) paired with the CS sustained the acquire adversive memory. Furthermore, LiCl was reintroduced as US in order to assess the effect of prior exposure to two types of stress (acute and TDS) on subsequently acquired CTA memory. Prior exposure to acute stress had no significant effect on subsequently acquired aversive memory when measured either 3- or 7 days post-conditioning (CS-US). Stress-restress (TDS) exposure, however, indicated a significant decrease in aversive memory from 3- to 7 days post-conditioning (CS-US) as well as a significant decrease in aversive memory between the control- and the TDS group 7 days post-conditioning. The mAChR density (B,,) in the frontal cortex; but not in the hippocampus, was elevated at the same point in time (7 days post CS-US pairing) that CTA memory was impaired following TDS stress (stress-restress). Ultimately, these data support an association between altered cholinergic receptors and hyperarousallanxiety in an animal model of PTSD. The data also support the phenomenon of individual susceptibility to stress in animals that parallels that observed in humans exposed to severe trauma. Impaired aversive memory (CTA) is a consequence of prior exposure to TDS stress, but not acute stress, and is likewise mediated by an altered central cholinergic transmission displayed as an increase in mAChRs in the frontal cortex. The lack of studies regarding the influence of the cholinergic system in PTSD related behavior earns ,this project value as inimitable PTSD research. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2007.

Page generated in 0.089 seconds