• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studying and Improving Lambda Red Recombination for Genome Engineering in Escherichia coli

Mosberg, Joshua Adam Weintrob 07 June 2014 (has links)
The phage-derived Lambda Red recombination system utilizes exogenous DNA in order to generate precise insertion, deletion, and point mutations in Escherichia coli and other bacteria. Due to its convenience, it is a frequently-used tool in genetics and molecular biology, as well as in larger-scale genome engineering projects. However, limited recombination frequency constrains the usefulness of Lambda Red for several important applications. In this work, I utilize a mechanism-guided approach in order to improve the power and utility of Lambda Red recombination.
12

Advanced Genomic Engineering Strategy based on Recombineering Protocols to “Tailor” Escherichia coli Strains

Sukhija, Karan 19 May 2011 (has links)
A systematic approach based on bacteriophage Lambda (Lambda Red) and flippase-flippase recognition targets (FLP-FRT) recombinations was proposed for genomic engineering of Escherichia coli. For demonstration purposes, DNA operons containing heterologous genes (i.e. pac encoding E. coli penicillin acylase and palB2 encoding Pseudozyma antarctica lipase B mutant) engineered with regulatory elements, such as strong/inducible promoters (i.e. Ptrc and ParaB), operators, and ribosomal binding sites, were integrated into the E. coli genome at designated locations (i.e. lacZYA, dbpA, and lacI-mhpR loci) either as a gene replacement or gene insertion using various antibiotic selection markers (i.e. kanamycin and chloramphenicol) under various genetic backgrounds (i.e. HB101 and DH5α). The expression of the inserted foreign genes was subject to regulation using appropriate inducers [Isopropyl β-D-1-thiogalactopyranoside (IPTG) and arabinose] at tuneable concentrations. The developed approach has paved an effective way to “tailor” plasmid-free E. coli strains with desired genotypes suitable for various biotechnological applications, such as biomanufacturing and metabolic engineering.
13

Insights into the structure and function of Red beta: the unique single-strand annealing protein of bacteriophage lambda;

Smith, Christopher E. January 2015 (has links)
No description available.
14

Generierung und Charakterisierung ei-nes Claudin-3-defizienten Mausmodells

Schröder, Kathrin 24 June 2013 (has links)
Die größte Proteinfamilie des TJ-Komplexes stellen die 27 bisher beim Säuger bekannten Claudine dar. Claudin-3 (CLDN3) ist ein ubiquitär exprimiertes TJ-Protein, dessen Rolle in vivo jedoch unbekannt ist. Um Einblicke in dessen physiologische Funktion zu bekommen, wurde für diese Arbeit ein Claudin-3-defizientes Mausmodell mittels der konditionalen Gentargeting-Technologie generiert. Zur Erstellung des Targetingvektors wurde eine „Recombineering“-basierte Methode ausgewählt. Die Cldn3-deletierten Mäuse waren lebensfähig und in der Lage sich fortzupflanzen. Jedoch unterlag die Genotypverteilung aus den Verpaarungen heterozygoter Tiere nicht den Mendelschen Regeln. Es wurden weniger Cldn3(-/-) Tiere geboren. Funktionelle Analysen von Leber und Nieren, mit Ausnahme eines erhöhten Urin pH-Wertes, lieferten keine Auffälligkeiten. Elektrophysiologische Analysen am Colon zeigten keine Unterschiede zwischen Cldn3(-/-) und Cldn3(+/+) Mäusen. Der transepitheliale Widerstand, die Permeabilität für Natrium- und Chloridionen sowie für große ungeladene Moleküle waren in den Knockout-Mäusen unverändert. Die histologische Auswertung von Speicheldrüse, Niere und Leber zeigte jedoch bei alternden Tieren eine vermehrte Migration von Zellen lymphatischen Ursprungs ins Gewebe. Die Infiltrate waren zum größten Teil perivaskulär lokalisiert und weisen eine follikelähnliche Form auf. Immunohistologische Färbungen identifizierten die Zellen als T- und B-Zellen. Microarray-basierte Transkriptomanalysen in acht Wochen alten Tiere zeigten, dass vermutlich andere Claudine den Verlust von Cldn3 kompensieren. In der Leber wurden neben differenziell regulierten TJ-Proteinen auch Transkripte identifiziert, die mit der Zelladhäsion, Zellkommunikation und Signalweitergabe assoziiert sind. Die ersten Daten des Cldn3-Defizienzmodells liefern eine interessante Basis für weitere Studien in eine ganz neue Richtung. / Claudins are the largest and most important protein family within the TJ. Claudin-3 (CLDN3) is a ubiquitously expressed TJ protein, which functional role in vivo is still unknown. To gain insight into its physiological function a claudin-3 deficient mouse model has been generated using the conditional gene targeting technology. A "recombineering"-based method was chosen to create the targeting vector. The Cldn3 deficient mice were viable and fertil. Genotype distribution from hereozygous mating did not follow Mendelian rules: fewer Cldn3(-/-) animals were born and possible pointing at a prenatal lethality. Functional studies of liver and kidney, with the exception of elevated urine pH, revealed no abnormalities. Electrophysiological analyzes on colon shown no differences between the Cldn3(-/-) and Cldn3(+/+) mice. The transepithelial resistance, the permeability of sodium and chloride as well as uncharged molecules were unchanged in the knockout mice. Histological analyses of salivary gland, kidney and liver in aging animals showed an increased migration of cells with lymphathic origin into the tissue. The infiltrates were mostly localized perivascular and have a follicle form and would be identified as T- and B-lymphocytes via immunohistological analysis. Microarray-based analyses of eight week old animals suggest, that other Claudins are differentially expressed, thereby compensating for the loss of Cldn3. In the liver we identified differentially regulated TJ proteins, as well as deregulated transcripts that are associated with cell adhesion, cell communication and signal transduction. The first data of the Cldn3 knockout mouse model showed this a basis for further studies in a novel direction.
15

A recombineering pipeline for functional genomics applied to Caenorhabditis elegans

Sarov, Mihail 19 February 2007 (has links) (PDF)
Genome sequencing and annotation projects define the complete sets of RNA and protein components for living systems. They also present the challenge to generate functional information for thousands of previously uncharacterized genes. Protein tagging with fluorescent or affinity tags provides a generic way to describe protein expression and localization patterns and protein-protein interactions. The genome wide application of this approach in Saccharomyces cerevisiae has resulted in a comprehensive picture of the core proteome of a simple, well-studied model system. Extending these studies to more complex, multicellular model organisms, would allow us to place protein function onto a 4 dimensional space-time map, and will improve our understanding of the complex processes of development and differentiation. This will require efficient protein tagging methods and new high performance tags. Here we present a generic protein tagging approach for the model nematode Caenorhabditis elegans. The method is based on recombination mediated DNA engineering of genomic BAC clones into tagged transgenes for integrative transformation. C.elegans offers unique advantages for function discovery through protein tagging: compact and a well annotated genome, combined with a simple and well-understood anatomy and pattern of development. However, the methods for protein tagging in C.elegans have so far been inefficient and largely dependent on artificial cDNA based constructs, which can lack important regulatory elements. In contrast, our approach combines the advantages of authentic regulation with a new application of recombineering, which is simple, fast and efficient. For the first time we apply liquid culture cloning for multiple recombineering steps. This is particularly important when high throughput applications are considered, as it offers significant advantages in scale up and automation. We show that the BAC derived transgenes can be used for stable, integrative transformation in C. elegans. We show that the tagged transgene can take over the function of its endogenous counterpart. Using florescent reporter, we reproduce known and document new expression patterns. The second part of the thesis describes a project that we undertook to develop improved double affinity cassettes for protein purification. We evaluated the performance of 5 new double tag combinations in vitro and in mammalian culture cells. All of the new cassettes performed well and present a valuable tool for protein interaction studies in higher model systems.
16

Potential Application of Multiplex Automated Genome Engineering (MAGE) and One-Step Curing Plasmid System for Environmental Cambodian Enterobacterial Isolates

Alexandra, Olivia January 2021 (has links)
Antimicrobial resistance (AMR) is concerning because it limits antimicrobial drug treatment options. AMR occurs by the overuse and misuse of antimicrobial drugs. In environmental settings, AMR can disseminate from places of high use, which leads to increased exposure to humans and animals. A previous study from our laboratory group showed extended-spectrum cephalosporinase-producing Escherichia coli/Klebsiella pneumoniae were isolated from fecal samples obtained in rural Cambodian community settings. Based on these isolates, this study has two aims. The first aim was characterization of selected Cambodian isolates with random amplification polymorphic DNA (RAPD) and antibiotic susceptibility test. From RAPD, the selected six isolates are diverse, except for C61 and C66 bacteria isolates with potential clonality. Additionally, the selected isolates are multidrug resistant (MDR) with reduced susceptibility to beta-lactams and fluoroquinolones. The second aim was to assess two developed methodologies, multiplex automated genome engineering (MAGE) and One-Step Curing Plasmid, by validation in bacteria laboratory strain and development for six Cambodian isolates. To modify AMR genetic elements, MAGE uses pMA7-SacB for homologous recombination with oligos for chromosomal gene disruption. Meanwhile, One-Step Curing Plasmid uses pFREE with the CRISPR/Cas9 system for plasmid and self-curing. Validation showed that MAGE can modify 8% of E. coli MG1655 with lacZ control screening oligos and almost 90% are cured from pFREE. Selected Cambodian isolates have antibiotic-resistance plasmids of IncR or IncFII replicon. For usage in Cambodian isolates, pFREE was modified to be pCAM-FREE by cloning IncR and IncFII plasmid as gRNA1 and gRNA5, respectively. Sequencing results showed pCAM-FREE have gRNA5. In conclusion, our study managed to characterize selected Cambodian isolates as MDR and diverse. In a laboratory strain, MAGE and One-Step Curing Plasmid are functional methods. Furthermore, pCAM-FREE was constructed to target IncFII and in the future, MAGE and pCAM-FREE could be tested in Cambodian isolates.
17

A recombineering pipeline for functional genomics applied to Caenorhabditis elegans

Sarov, Mihail 11 December 2006 (has links)
Genome sequencing and annotation projects define the complete sets of RNA and protein components for living systems. They also present the challenge to generate functional information for thousands of previously uncharacterized genes. Protein tagging with fluorescent or affinity tags provides a generic way to describe protein expression and localization patterns and protein-protein interactions. The genome wide application of this approach in Saccharomyces cerevisiae has resulted in a comprehensive picture of the core proteome of a simple, well-studied model system. Extending these studies to more complex, multicellular model organisms, would allow us to place protein function onto a 4 dimensional space-time map, and will improve our understanding of the complex processes of development and differentiation. This will require efficient protein tagging methods and new high performance tags. Here we present a generic protein tagging approach for the model nematode Caenorhabditis elegans. The method is based on recombination mediated DNA engineering of genomic BAC clones into tagged transgenes for integrative transformation. C.elegans offers unique advantages for function discovery through protein tagging: compact and a well annotated genome, combined with a simple and well-understood anatomy and pattern of development. However, the methods for protein tagging in C.elegans have so far been inefficient and largely dependent on artificial cDNA based constructs, which can lack important regulatory elements. In contrast, our approach combines the advantages of authentic regulation with a new application of recombineering, which is simple, fast and efficient. For the first time we apply liquid culture cloning for multiple recombineering steps. This is particularly important when high throughput applications are considered, as it offers significant advantages in scale up and automation. We show that the BAC derived transgenes can be used for stable, integrative transformation in C. elegans. We show that the tagged transgene can take over the function of its endogenous counterpart. Using florescent reporter, we reproduce known and document new expression patterns. The second part of the thesis describes a project that we undertook to develop improved double affinity cassettes for protein purification. We evaluated the performance of 5 new double tag combinations in vitro and in mammalian culture cells. All of the new cassettes performed well and present a valuable tool for protein interaction studies in higher model systems.
18

Development of a Recombineering System in <i> Enterobacter</i> sp. YSU

Curtis, Christine January 2015 (has links)
No description available.
19

Functional analysis of the ALS/FTD associated gene FUS using a novel in vitro genomic DNA expression system

Thomas, Matthew Robert January 2013 (has links)
Aggregations of fused in sarcoma (FUS), a multifunctional RNA processing protein, define a pathological subtype of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), whilst mutations in the FUS gene are causative for ALS. To model the impact of FUS mutations, expression vectors containing the entire genomic sequence of FUS, up and downstream regions, and native promoter sequences have been generated. The constructs have been tagged with an mCherry fluorescent tag, and three separate pathological mutations (R244C, R521C, and P525L) have been separately inserted. Transgenic mice have been generated using the WT and P525L FUS vectors to provide a highly physiological model of FUS in disease. Within transfected HEK293 cells, insertion of the P525L and R521C FUS mutations leads to relocalisation of FUS from the nucleus to the cytoplasm. R521C and P525L mutant FUS incorporates into cytoplasmic aggregations of untranslated mRNA and RNA binding proteins known as stress granules. The strong relocalisation seen with P525L-FUS is associated with a gain of cytotoxicity. Reversal of this cytoplasmic relocalisation by demethylation of FUS rescues this cytotoxicity, suggesting a toxic gain of cytoplasmic function in the majority of FUS mutations. By contrast, insertion of the R244C mutation leads to neither relocalisation, stress granule association, nor cytotoxicity. Notably the R244C mutation, located away from the nuclear localization domain in which the majority of FUS mutations are found, leads to the presence of smaller FUS fragments in western blot analyses. These fragments appear not to be due to splicing defects in FUS but rather are due to post-translational modifications or aberrant protein cleavage. These data suggest an alternative pathway for FUS toxicity based upon a nuclear loss of function.
20

Defining the Requirements for Early Gene Expression in Bacteriophage HK639

Seaton, Amanda L. 01 August 2013 (has links)
Lambdoid phages suppress transcription termination to fully express their genes. Antitermination of early gene expression in most lambdoid phages is mediated by an interaction between the N protein and a number of host-encoded factors. Bacteriophage HK022 does not rely on a protein for antitermination. To promote full expression of early phage genes, the transcripts of the HK022 put sites interact directly with RNA polymerase to convert it to a termination resistant form. Bacteriophage HK639 also uses RNA-mediated antitermination. However, it only possesses a single put-like element in its left operon. Because most lambdoid phages, including HK022, have antiterminator elements in each of their early operons, the presence of a single antitermination site in HK639 was unexpected. We have shown that host genes involved in promoting protein-mediated antitermination are not required for HK639 growth. We have also shown that expression of the left operon is essential for lytic growth. Replacement of the left operon promoter, PL, and the putL antitermination sequence prevented HK639 phage release. A similar construct that only replaced putL also prevented phage release. These results suggest that antitermination is required for HK639 excision and/or lytic growth. To distinguish between a defect in phage excision versus a defect in lytic growth, the mutations were crossed onto lytically growing phage. Recombinant phages could not be recovered which suggests a defect in lytic growth is preventing phage release. Additional replacements of left operon sequences suggest that antitermination is not the only requirement for lytic growth. A 2,161bp deletion (HK639 genome coordinates 30,888-33,048) and a 1,736bp deletion (HK639 genome coordinates 29,152- 30,887) downstream of the HK639 putL site also prevented phage release, whereas a 1,746bp deletion (HK639 genome coordinates 29,151-27,406) did not. These results suggest that the deleted HK639 left operon sequences are required for lytic growth. BLAST analysis did not provide insight into the function of the deleted genes. Although the function of many of the HK639 left operon genes is unknown, their importance in phage growth can now be verified by complementation analysis. Our results suggest that HK639 may use a novel mechanism to control the expression of its early genes.

Page generated in 0.092 seconds