• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 13
  • 7
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 27
  • 20
  • 19
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Attributed Network Clustering : Application to recommender systems / Clustering dans les réseaux attribués : Application aux systèmes de recommandation

Falih, Issam 08 March 2018 (has links)
Au cours de la dernière décennie, les réseaux (les graphes) se sont révélés être un outil efficace pour modéliser des systèmes complexes. La problématique de détection de communautés est une tâche centrale dans l’analyse des réseaux complexes. La majeur partie des travaux dans ce domaine s’intéresse à la structure topologique des réseaux. Cependant, dans plusieurs cas réels, les réseaux complexes ont un ensemble d’attributs associés aux nœuds et/ou aux liens. Ces réseaux sont dites : réseaux attribués. Mes activités de recherche sont basées principalement sur la détection des communautés dans les réseaux attribués. Pour aborder ce problème, on s’est intéressé dans un premier temps aux attributs relatifs aux liens, qui sont un cas particulier des réseaux multiplexes. Un multiplex est un modèle de graphe multi-relationnel. Il est souvent représenté par un graphe multi-couches. Chaque couche contient le même ensemble de nœuds mais encode une relation différente. Dans mes travaux de recherche, nous proposons une étude comparative des différentes approches de détection de communautés dans les réseaux multiplexes. Cette étude est faite sur des réseaux réels. Nous proposons une nouvelle approche centrée "graine" pour la détection de communautés dans les graphes multiplexes qui a nécessité la redéfinition des métriques de bases des réseaux complexes au cas multiplex. Puis, nous proposons une approche de clustering dans les réseaux attribués qui prend en considération à la fois les attributs sur les nœuds et sur les liens. La validation de mes approches a été faite avec des indices internes et externes, mais aussi par une validation guidée par un système de recommandation que nous avons proposé et dont la détection de communautés est sa tâche principale. Les résultats obtenus sur ces approches permettent d’améliorer la qualité des communautés détectées en prenant en compte les informations sur les attributs du réseaux. De plus, nous offrons des outils d’analyse des réseaux attribués sous le langage de programmation R. / In complex networks analysis field, much effort has been focused on identifying graphs communities of related nodes with dense internal connections and few external connections. In addition to node connectivity information that are mostly composed by different types of links, most real-world networks contains also node and/or edge associated attributes which can be very relevant during the learning process to find out the groups of nodes i.e. communities. In this case, two types of information are available : graph data to represent the relationship between objects and attributes information to characterize the objects i.e nodes. Classic community detection and data clustering techniques handle either one of the two types but not both. Consequently, the resultant clustering may not only miss important information but also lead to inaccurate findings. Therefore, various methods have been developed to uncover communities in networks by combining structural and attribute information such that nodes in a community are not only densely connected, but also share similar attribute values. Such graph-shape data is often referred to as attributed graph.This thesis focuses on developing algorithms and models for attributed graphs. Specifically, I focus in the first part on the different types of edges which represent different types of relations between vertices. I proposed a new clustering algorithms and I also present a redefinition of principal metrics that deals with this type of networks.Then, I tackle the problem of clustering using the node attribute information by describing a new original community detection algorithm that uncover communities in node attributed networks which use structural and attribute information simultaneously. At last, I proposed a collaborative filtering model in which I applied the proposed clustering algorithms.
22

Computing with Granular Words

Hou, Hailong 07 May 2011 (has links)
Computational linguistics is a sub-field of artificial intelligence; it is an interdisciplinary field dealing with statistical and/or rule-based modeling of natural language from a computational perspective. Traditionally, fuzzy logic is used to deal with fuzziness among single linguistic terms in documents. However, linguistic terms may be related to other types of uncertainty. For instance, different users search ‘cheap hotel’ in a search engine, they may need distinct pieces of relevant hidden information such as shopping, transportation, weather, etc. Therefore, this research work focuses on studying granular words and developing new algorithms to process them to deal with uncertainty globally. To precisely describe the granular words, a new structure called Granular Information Hyper Tree (GIHT) is constructed. Furthermore, several technologies are developed to cooperate with computing with granular words in spam filtering and query recommendation. Based on simulation results, the GIHT-Bayesian algorithm can get more accurate spam filtering rate than conventional method Naive Bayesian and SVM; computing with granular word also generates better recommendation results based on users’ assessment when applied it to search engine.
23

Next Page Prediction With Popularity Based Page Rank, Duration Based Page Rank And Semantic Tagging Approach

Yanik, Banu Deniz 01 February 2012 (has links) (PDF)
Using page rank and semantic information are frequently used techniques in next page prediction systems. In our work, we extend the use of Page Rank algorithm for next page prediction with several navigational attributes, which are size of the page, duration of the page visit and duration of transition (two page visits sequentially), frequency of page and transition. In our model, we define popularity of transitions and pages by using duration information, use it in a relation with page size, and visit frequency factors. By using the popularity value of pages, we bias conventional Page Rank algorithm and model a next page prediction system that produces page recommendations under given top-n value. Moreover, we extract semantic terms from web URLs in order to tag pages semantically. The extracted terms are mapped into web URLs with different level of details in order to find semantically similar pages for next page recommendations. With this tagging, we model another next page prediction method, which uses Semantic Tagging (ST) similarity and exploits PPR values as a supportive method. Moreover, we model a Hybrid Page Rank (HPR) algorithm that uses both Semantic Tagging based approach and Popularity Based Page Rank values of pages together in order to investigate the effect of PPR and ST with equal weights. In addition, we investigate the effect of local (a synopsis of directed web graph) and global (whole directed web graph) modeling on next page prediction accuracy.
24

HOW DO CONSUMERS USE SOCIAL SHOPPING WEBSITES? THE IMPACT OF SOCIAL ENDORSEMENTS

Xu, Pei 01 January 2014 (has links)
Social endorsements are user-generated endorsements of products or services, such as “likes” and personal collections, in an online social platform. We examine the effect of prior social endorsements on subsequent users’ tendency to endorse or examine a product in a social shopping context, where a social platform connect consumers and enable a collaborative shopping experience. This research consists of two parts. In part I, we identify two ways prior social endorsements can affect subsequent user behavior: as a crowd endorsement, which is an aggregate number of endorsements a product receives for anyone who comes across the product, and as a friend endorsement, which is an endorsement with the endorser’s identity delivered only to the endorser’s friends or followers. Using a panel data of 1656 products on a leading social shopping platform, we quantify the relationship between crowd and friend endorsements and subsequent examination (“click”) and endorsement (“like”) of the products, noting that examination is a private behavior while endorsement is a public behavior. Our results are consistent with the identity signaling theory where identity-conscious consumers converge with the aspiration group (the followers) in their public behavior (e.g. endorsement) and diverge from the avoidance groups (the crowd). We also find differences between public and private behaviors. Moreover, the symbolic nature of social shopping platform trumps the traditional dichotomy of symbolic/functional product attributes. Part II of this study seeks to clarify the underlying mechanism through lab experiments. We hypothesize that consumers’ evaluative attitude, specifically the value-expressive type, moderates the relationship between crowd and friend endorsements and a focal user’s product choice. Our initial results of the second study show support for this idea in the cases when the product choice is not obvious.
25

Building Energy Modeling: A Data-Driven Approach

January 2016 (has links)
abstract: Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on off-line model is applied based on system identification and Kalman filtering methods. The developed data-driven modeling framework is validated on various genres of buildings, and the experimental results demonstrate desired performance on building energy forecasting in terms of accuracy and computational efficiency. The framework could be easily implemented into building energy model predictive control (MPC), demand response (DR) analysis and real-time operation decision support systems. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2016
26

A Recommendation system with hybrid content filtering for virtual learning environments as a tool for supporting students and monitoring numerous classes / Um Sistema de recomendaÃÃo com filtragem hÃbrida de conteÃdos para ambientes virtuais de aprendizagem como instrumento de suporte a alunos e acompanhamento de turmas numerosas

Paulo Andrà Lima Pequeno 26 August 2014 (has links)
The provision of educational sources on the Web through specific portals or by public libraries has given democratic spaces to both students and teachers to support their educational routine. However, it is always a challenge to make all that diversity of resources useful to each individual having into consideration their needs. This dissertation seeks to contribute providing students and teachers with a computational environment to help in the learning process. This solution connected to a Learning Virtual Environment and an Exercise Virtual Environment allows students to have an automatic tutorial support, which has references and content targeted to their learning level. This solution allows to the teachers not only support their didactic work with the students, but also it permits to view the status of each student against curricular elements that should be addressed in the teacherâs discipline. Such approach can help the teacher in making adjustments and improvements to the course. ESignifica, a recommendation system was developed according to the filtering hybrid techniques, that add a content and a collaborative filter as well. The developed solution was tested with a student group from the Calculus subject that belonged to the Electrical Engineering course from the Federal University of Cearà â UFC, academic years 2012, 2013 and 2014. The Recommendation System developed and the experimental results achieved are presented in this dissertation. / A oferta de recursos educacionais na web por meio de portais especÃficos ou de bibliotecas pÃblicas de conteÃdo tem proporcionado espaÃos democrÃticos a alunos e professores no apoio a suas prÃticas acadÃmicas. No entanto, tornar Ãtil a diversidade de recursos disponÃveis levando em consideraÃÃo as necessidades especÃficas de cada indivÃduo à ainda um desafio a enfrentar. Inserindo-se neste contexto, este trabalho, propÃe um ambiente computacional a alunos e professores que seja capaz de sugerir, de maneira seletiva, conteÃdos de apoio ao processo de aprendizagem. Integrando um Ambiente Virtual de Aprendizagem a um Ambiente Virtual de ExercÃcios, o Sistema de RecomendaÃÃo sugere ao aluno referÃncias a conteÃdos adequados ao nÃvel de dificuldade apresentado durante a realizaÃÃo de exercÃcios interativos propostos. AlÃm disso, a partir do rastreamento das interaÃÃes dos alunos com os exercÃcios interativos e compilaÃÃo de resultados, o sistema permite identificar, atravÃs de relatÃrios, os conteÃdos com os quais os alunos vÃm apresentando maiores dificuldades, tanto do ponto de vista individual como coletivo, instrumentalizando professores à realizaÃÃo de medidas proativas. O sistema de recomendaÃÃo desenvolvido, denominado eSignifica, foi especificado segundo as tÃcnicas de filtragem hÃbrida, combinando filtragem de conteÃdo e filtragem colaborativa. A soluÃÃo desenvolvida foi testada com turmas de alunos de uma disciplina de CÃlculo Fundamental do curso de Engenharia ElÃtrica da Universidade federal do Cearà â UFC nos anos letivos de 2012, 2013 e 2014. O Sistema de RecomendaÃÃo desenvolvido e os resultados experimentais alcanÃados demonstraram a possibilidade que um trabalho preventivo pode resultar em um melhor rendimento da turma, assim como apresentar as dificuldades mais relevantes da turma pode servir de auxÃlio ao professor para um planejamento de aulas mais eficaz.
27

Extração de Características de Perfil e de Contexto em Redes Sociais para Recomendação de Recursos Educacionais

Silva, Crystiam Kelle Pereira e 27 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2015-12-01T13:50:34Z No. of bitstreams: 1 crystiamkellepereiraesilva.pdf: 5368190 bytes, checksum: 22e15248de5dbc282e6d4324b03dca64 (MD5) / Made available in DSpace on 2015-12-01T13:50:34Z (GMT). No. of bitstreams: 1 crystiamkellepereiraesilva.pdf: 5368190 bytes, checksum: 22e15248de5dbc282e6d4324b03dca64 (MD5) Previous issue date: 2015-03-27 / Existem inúmeros recursos educacionais distribuídos em diferentes repositórios que abordam um conjunto amplo de assuntos e que possuem objetivos educacionais distintos. A escolha adequada desses recursos educacionais é um desafio para os usuários que desejam usá-los para a sua formação intelectual. Nesse contexto surgem os Sistemas de Recomendação para auxiliar os usuários nessa tarefa. Para que seja possível gerar recomendações personalizadas, torna-se importante identificar informações que ajudem a definir o perfil do usuário e auxiliem na identificação de suas necessidades e interesses. O uso constante e cada vez mais intenso de algumas ferramentas tecnológicas faz com que inúmeras informações a respeito do perfil, dos interesses, das preferências, da forma de interação e do comportamento do usuário possam ser identificadas em decorrência da interação espontânea que ocorre nesses sistemas. Esse é o caso, por exemplo, das redes socais. Neste trabalho é apresentada a proposta e o desenvolvimento de uma arquitetura capaz de extrair características do perfil e do contexto educacional dos usuários, através da rede social Facebook e realizar recomendações de recursos educacionais de forma individualizada e personalizada que sejam condizentes com essas características. A solução proposta é apoiada por técnicas de extração de informações e ontologias para a extração, definição e enriquecimento das características e interesses dos usuários. As técnicas de Extração de Informação foram aplicadas aos textos associados às páginas curtidas e compartilhadas por usuários nas suas redes sociais para extrair informação estruturada que possa ser usada no processo de recomendação de recursos educacionais. Já as ontologias foram usadas para buscar interesses relacionados aos temas extraídos. A recomendação é baseada em repositório de objetos de aprendizagem e em repositórios de dados ligados e é realizada dentro das redes sociais, aproveitando o tempo despendido pelos usuários nas mesmas. A avaliação da proposta foi feita a partir do desenvolvimento de um protótipo, três provas de conceito e um estudo de caso. Os resultados da avaliação mostraram a viabilidade e uma aceitação relevante por parte dos usuários no sentido de extrair informações sobre os seus interesses educacionais, geradas automaticamente da rede social Facebook, enriquecê-las, encontrar interesses implícitos e usar essas informações para recomendar recursos educacionais. Foi verificada também a possibilidade da recomendação de pessoas, permitindo a formação de uma rede de interesses em torno de um determinado tema, indicando aos usuários bons parceiros para estudo e pesquisa. / There are several educational resources distributed in different repositories that address to a wide range of subjects and have different educational goals. The proper choice of these educational resources is a challenge for users who want to use them for their intellectual development. In this context, recommendation systems may help users in this task.In order to be able to generate personalized recommendations, it is important to identify information that will help to define user profile and assist in identifying his/her needs and interests. The constant and ever-increasing use of some technological tools allows the identification of different information about profile, interests, preferences, interaction style and user behavior from the spontaneous interaction that occurs in these systems, as, for example, the social networks. This paper presents the proposal and the development of one architecture able to extract users´ profile characteristics and educational context, from the Facebook social network and recommend educational resources in individualized and personalized manner, consistent with these characteristics. The proposed solution is supported by Information Extraction Techniques and ontologies for the extraction, enrichment and definition of user characteristics and interests. The Information Extraction techniques were applied to texts associated with “LIKE” and shared user´s pages on his social networks to extract structured information that can be used in the recommendation process of educational resources, the ontologies were used to search to interests related to extracted subjects. The recommendation process is based on learning objects repositories and linked data repositories and is carried out within social networks, taking advantage of user time spent at the web. The proposal evaluation was made from the development of a prototype, three proofs of concept and a case study. The evaluation results show the viability and relevant users´ acceptance in order to extract information about their educational interests, automatically generated from the Facebook social network, enrich these information, find implicit interests and use this information to recommend educational resources. It was also validated the possibility of people recommendation, enabling the establishment of interest network, based on a specific subject, showing good partners to study and research.
28

Recommending new items to customers : A comparison between Collaborative Filtering and Association Rule Mining / Rekommendera nya produkter till kunder : En jämförelsestudie mellan Collaborative Filtering och Association Rule Mining

Sohlberg, Henrik January 2015 (has links)
E-commerce is an ever growing industry as the internet infrastructure continues to evolve. The benefits from a recommendation system to any online retail store are several. It can help customers to find what they need as well as increase sales by enabling accurate targeted promotions. Among many techniques that can form recommendation systems, this thesis compares Collaborative Filtering against Association Rule Mining, both implemented in combination with clustering. The suggested implementations are designed with the cold start problem in mind and are evaluated with a data set from an online retail store which sells clothing. The results indicate that Collaborative Filtering is the preferable technique while associated rules may still offer business value to stakeholders. However, the strength of the results is undermined by the fact that only a single data set was used. / E-handel är en växande marknad i takt med att Internet utvecklas samtidigt som antalet användare ständigt ökar. Antalet fördelar från rekommendationssytem som e-butiker kan dra nytta av är flera. Samtidigt som det kan hjälpa kunder att hitta vad de letar efter kan det utgöra underlag för riktade kampanjer, något som kan öka försäljning. Det finns många olika tekniker som rekommendationssystem kan vara byggda utifrån. Detta examensarbete ställer fokus på de två teknikerna Collborative Filtering samt Association Rule Mining och jämför dessa sinsemellan. Båda metoderna kombinerades med klustring och utformades för att råda bot på kallstartsproblemet. De två föreslagna implementationerna testades sedan mot en riktig datamängd från en e-butik med kläder i sitt sortiment. Resultaten tyder på att Collborative Filtering är den överlägsna tekniken samtidigt som det fortfarande finns ett värde i associeringsregler. Att dra generella slutsatser försvåras dock av att enbart en datamängd användes.
29

System för automatiska rekommendationer av nyheter och evenemang / Systems for automatic recommendations of news and events

Brandt, Theodor January 2015 (has links)
Teknik och data är nyckeln till att Bonnier Business Media (BBM) ska kunna nå sina mål och leverera ytterligare tillväxt. Därför vill man ligga i framkant när det gäller att undersöka nya tekniker som kan förbättra plattformarna och göra dem mer tidsenliga. BBM har bland annat velat ta fram ett rekommendationssystem som ska användas till att göra innehållet individanpassat på webbplatserna och på ett effektivt sätt presentera detta så att de olika målgrupperna får den information de förväntar sig. Till exempel ska besökaren kunna få förslag på artiklar och evenemang som kan vara av intresse. Målet med detta examensarbete har varit att ta fram en prototyp för ett rekommendationssy- stem med tillhörande algoritmer. Prototypen skulle kunna användas som ett “koncepttest” för att undersöka möjligheten att skapa personliga rekommendationer till läsare på Veckans Affärers webbplats, va.se. Implementationen av rekommendationssystem som togs fram till BBM bestod av en objektbaserad kollaborativ filtrerings algoritm som använde besökarnas beteende, publiceringsdatum och popularitet på artiklarna och evenemangen för att skapa individuella rekommendationer. Efter genomförda tester och analyser visar resultatet att det är fullt möjligt att skapa personliga rekommendationer som har en högre precision än vad ett grundläggande rekommendationssystem, till exempel en popularitetslista, kan erbjuda. / Technology is the key for Bonnier Business Media (BBM) to reach their goals and deliver future growth. Therefore they want to be in the very forefront when it comes to exploring new technologies that can improve their platforms and make them more up to date. BBM has among other things aimed to develop a recommendation system that is supposed to make the content of their web sites personalized and in an efficient way present this so that the different target groups will get the information that they expect. For example the visitor should be able to get suggestions on articles and events that might be of interest. The aim of this thesis has been to develop a prototype of a recommendation system with associated algorithms. The prototype could be used as to examine the possibility to create personalized recommendations for the readers on BBM:s website va.se (Veckans Affärer). The implementation of the recommendation system that was developed for BBM consisted of an object-based collaborative filtering algorithm using visitor behavior, publication date and popularity of articles and events to create personalized recommendations. After com- pleting tests and analyzes the results show that it is possible to create recommendations with a higher precision than a basic recommendation system, like a popularity list, can of- fer.
30

The Hidden Side Effects of Recommendation Systems : A study from user perspective to explore the ethical aspects of Recommender systems

Tariq, Saad January 2021 (has links)
This study analyzes the recommendation systems from a user’s perspective and identifies five areas of concern in developing and using a recommendation system. The study’s methods are focus group discussions with Data scientists and Full-stack developers working in the industry. An online survey was distributed to several Facebook groups of various universities. The study results indicate that users have a strong desire to have their moral sensitivities under their control. The study also enables the system developers to understand the recommendations of the system affect the conflicting interests of various entities. / Den här studien analyserar rekommendationssystemen ur ett användarperspektiv, och identifierar fem relevanta områden att ha i åtanke i utvecklingen och användandet av ett rekommendationssystem. Studiens metoder består av fokusgruppsdiskussioner med datavetare och s.k. “full-stack-utvecklare” som arbetar inom IT-branschen. En online-enkät delades ut till flera Facebook-grupper tillhörande olika universitet. Studiens resultat indikerar att användare har en tydlig preferens att ha kontroll över sina moraliska perspektiv. Vidare tillåter även studien systemutvecklare att förstå att systemets rekommendationer påverkar intressekonflikter mellan olika enheter och intressenter.

Page generated in 0.1534 seconds