• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 5
  • Tagged with
  • 23
  • 23
  • 11
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mathematical modelling and numerical simulation in materials science / Modélisation mathématique et simulation numérique en science des matériaux

Boyaval, Sébastien 16 December 2009 (has links)
Dans une première partie, nous étudions des schémas numériques utilisant la méthode des éléments finis pour discrétiser le système d'équations Oldroyd-B modélisant un fluide viscolélastique avec conditions de collement dans un domaine borné, en dimension deux ou trois. Le but est d'obtenir des schémas stables au sens où ils dissipent une énergie libre, imitant ainsi des propriétés thermodynamiques de dissipation similaires à celles identifiées pour des solutions régulières du modèle continu. Cette étude s'ajoute a de nombreux travaux antérieurs sur les instabilités observées dans les simulations numériques d'équations viscoélastiques (dont celles connues comme étant des Problèmes à Grand Nombre de Weissenberg). A notre connaissance, c'est la première étude qui considère rigoureusement la stabilité numérique au sens de la dissipation d'une énergie pour des discrétisations de type Galerkin. Dans une seconde partie, nous adaptons et utilisons les idées d'une méthode numérique initialement développée dans des travaux de Y. Maday, A. T. Patera et al., la méthode des bases réduites, pour simuler efficacement divers modèles multi-échelles. Le principe est d'approcher numériquement chaque élément d'une collection paramétrée d'objets complexes dans un espace de Hilbert par la plus proche combinaison linéaire dans le meilleur sous-espace vectoriel engendré par quelques éléments bien choisis au sein de la même collection paramétrée. Nous appliquons ce principe pour des problèmes numériques liés : à l'homogénéisation numérique d'équations elliptiques scalaires du second-ordre, avec coefficients de diffusion oscillant à deux échelles, puis ; à la propagation d'incertitudes (calculs de moyenne et de variance) dans un problème elliptique avec coefficients stochastiques (un champ aléatoire borné dans une condition de bord du troisième type), enfin ; au calcul Monte-Carlo de l'espérance de nombreuses variables aléatoires paramétrées, en particulier des fonctionnelles de processus stochastiques d'Itô paramétrés proches de ce qu'on rencontre dans les modèles micro-macro de fluides polymériques, avec une variable de contrôle pour en réduire la variance. Dans chaque application, le but de l'approche bases-réduites est d'accélérer les calculs sans perte de précision / In a first part, we study numerical schemes using the finite-element method to discretize the Oldroyd-B system of equations, modelling a viscoelastic fluid under no flow boundary condition in a 2- or 3- dimensional bounded domain. The goal is to get schemes which are stable in the sense that they dissipate a free-energy, mimicking that way thermodynamical properties of dissipation similar to those actually identified for smooth solutions of the continuous model. This study adds to numerous previous ones about the instabilities observed in the numerical simulations of viscoelastic fluids (in particular those known as High Weissenberg Number Problems). To our knowledge, this is the first study that rigorously considers the numerical stability in the sense of an energy dissipation for Galerkin discretizations. In a second part, we adapt and use ideas of a numerical method initially developped in the works of Y. Maday, A.T. Patera et al., the reduced-basis method, in order to efficiently simulate some multiscale models. The principle is to numerically approximate each element of a parametrized family of complicate objects in a Hilbert space through the closest linear combination within the best linear subspace spanned by a few elementswell chosen inside the same parametrized family. We apply this principle to numerical problems linked : to the numerical homogenization of second-order elliptic equations, with two-scale oscillating diffusion coefficients, then ; to the propagation of uncertainty (computations of the mean and the variance) in an elliptic problem with stochastic coefficients (a bounded stochastic field in a boundary condition of third type), last ; to the Monte-Carlo computation of the expectations of numerous parametrized random variables, in particular functionals of parametrized Itô stochastic processes close to what is encountered in micro-macro models of polymeric fluids, with a control variate to reduce its variance. In each application, the goal of the reduced-basis approach is to speed up the computations without any loss of precision
22

A new approximation framework for PGD-based nonlinear solvers / Un nouveau cadre d'approximation dédié à la strategie de calcul PGD pour problèmes non-lineaires

Capaldo, Matteo 23 November 2015 (has links)
Le but de ce travail est d'introduire un cadre d'approximation, la Reference Points Method, afin de réduire la complexité de calcul des opérations algébriques lorsqu'elles concernent des approximations à variables séparées dans le cadre de la Proper Generalized Decomposition.La PGD a été introduite dans [1] dans le cadre de la méthode LaTIn pour résoudre efficacement des équations différentielles non linéaires et dépendants du temps en mécanique des structures. La technique consiste à chercher la solution d'un problème dans une base d'ordre réduit (ROB) qui est automatiquement et à la volée générée par la méthode LaTIn. La méthode LaTIn est une stratégie itérative qui génère les approximations de la solution sur l'ensemble du domaine espace-temps-paramètres par enrichissements successifs. Lors d'une itération particulière, la ROB, qui a déjà été formée, est d'abord utilisée pour calculer un nouveau modèle réduit (ROM) et, donc, pour trouver une nouvelle approximation de la solution. Si la qualité de cette approximation ne suffit pas, la ROB est enrichie avec la génération d'un nouveau produit de fonctions PGD en utilisant un algorithme de type 'greedy'.Les techniques de réduction de modèle sont particulièrement efficaces lorsque le ROM a besoin d'être construit qu'une seule fois. Ce n'est pas le cas pour les techniques de réduction de modèle quand elles concernent des problèmes non linéaires. En effet, dans un tel cas, les opérateurs qui sont impliqués dans la construction du ROM varient au cours du processus itératif et des calculs préliminaires ne peuvent pas être effectués à l'avance pour accélérer le processus 'online'.Par conséquent, la construction du ROM est un élément coûteux de la stratégie de calcul en terme de temps de calcul. Il en découle la nécessité d'évaluer, à chaque itération, la fonction non linéaire de grande dimension (et éventuellement sa jacobienne) et ensuite sa projection pour obtenir les opérateurs réduits. Cela représente un point de blocage des stratégies de réduction de modèle dans le cadre non linéaire. Le présent travail a comme but une réduction ultérieure du coût de calcul, grâce à l'introduction d'un nouveau cadre de rapprochement dédiée à la stratégie de calcul LaTIn-PGD. Il est basé sur la notion de temps, de points et de paramètres de référence et permet de définir une version compressée des données. Comparé à d'autres techniques similaires [3,4] cela ne se veut pas une technique d'interpolation, mais un cadre algébrique qui permet de donner une première approximation, peu coûteuse, de toutes les quantités sous une forme à variable séparés par des formules explicites. L'espace de données compressées présente des propriétés intéressantes qui traitent les opérations algébriques élémentaires. Le RPM est introduit dans le solveur LaTIn-PGD non linéaire pour calculer certaines opérations répétitives. Ces opérations sont liées à la résolution du problème du temps / paramètre qui implique la mise à jour de l'opérateur tangent et la projection de ce dernier sur la base réduite. La RPM permet de simplifier et de réduire le nombre d'opérations nécessaires.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010. / The aim of this work is to introduce an approximation framework, called Reference Points Method (RPM), in order to decrease the computational complexity of algebraic operations when dealing with separated variable approximations in the Proper Generalized Decomposition (PGD) framework.The PGD has been introduced in [1] in the context of the LATIN method to solve efficiently time dependent and/or parametrized nonlinear partial differential equations in structural mechanics (see, e.g., the review [2] for recent applications). Roughly, the PGD technique consists in seeking the solution of a problem in a relevant Reduced-Order Basis (ROB) which is generated automatically and on-the-fly by the LATIN method. This latter is an iterative strategy which generates the approximations of the solution over the entire time- space-parameter domain by successive enrichments. At a particular iteration, the ROB, which has been already formed, is at first used to compute a projected Reduced-Order Model (ROM) and find a new approximation of the solution. If the quality of this approximation is not sufficient, the ROB is enriched by determining a new functional product using a greedy algorithm.However, model reduction techniques are particularly efficient when the ROM needs one construction only. This is not the case for the model reduction techniques when they are addressed to nonlinear problems. Indeed, in such a case, the operators which are involved in the construction of the ROM change all along the iterative process and no preliminary computations can be performed in advance to speed up the online process. Hence, the construction of the ROM is an expensive part of the calculation strategy in terms of CPU. It ensues from the need to evaluate the high-dimensional nonlinear function (and eventually its Jacobian) and then to project it to get the low-dimensional operators at each computational step of a solution algorithm. This amounts to being the bottleneck of nonlinear model reduction strategies.The present work is then focused on a further reduction of the computational cost, thanks to the introduction of a new approximation framework dedicated to PGD-based nonlinear solver. It is based on the concept of reference times, points and parameters and allows to define a compressed version of the data. Compared to other similar techniques [3,4] this is not an interpolation technique but an algebraic framework allowing to give an inexpensive first approximation of all quantities in a separated variable form by explicit formulas. The space of compressed data shows interesting properties dealing the elementary algebraic operations. The RPM is introduced in the PGD-based nonlinear solver to compute some repetitive operations. These operations are related to the resolution of the time/parameter problem that involves the update of the tangent operator (for nonlinear problems) and the projection of this latter on the Reduced Order Basis. For that the RPM allows to simplify and reduce the number of operations needed.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010.
23

Méthodes d'accéleration pour la résolution numérique en électrolocation et en chimie quantique / Acceleration methods for numerical solving in electrolocation and quantum chemistry

Laurent, Philippe 26 October 2015 (has links)
Cette thèse aborde deux thématiques différentes. On s’intéresse d’abord au développement et à l’analyse de méthodes pour le sens électrique appliqué à la robotique. On considère en particulier la méthode des réflexions permettant, à l’image de la méthode de Schwarz, de résoudre des problèmes linéaires à partir de sous-problèmes plus simples. Ces deniers sont obtenus par décomposition des frontières du problème de départ. Nous en présentons des preuves de convergence et des applications. Dans le but d’implémenter un simulateur du problème direct d’électrolocation dans un robot autonome, on s’intéresse également à une méthode de bases réduites pour obtenir des algorithmes peu coûteux en temps et en place mémoire. La seconde thématique traite d’un problème inverse dans le domaine de la chimie quantique. Nous cherchons ici à déterminer les caractéristiques d’un système quantique. Celui-ci est éclairé par un champ laser connu et fixé. Dans ce cadre, les données du problème inverse sont les états avant et après éclairage. Un résultat d’existence locale est présenté, ainsi que des méthodes de résolution numériques. / This thesis tackle two different topics.We first design and analyze algorithms related to the electrical sense for applications in robotics. We consider in particular the method of reflections, which allows, like the Schwartz method, to solve linear problems using simpler sub-problems. These ones are obtained by decomposing the boundaries of the original problem. We give proofs of convergence and applications. In order to implement an electrolocation simulator of the direct problem in an autonomous robot, we build a reduced basis method devoted to electrolocation problems. In this way, we obtain algorithms which satisfy the constraints of limited memory and time resources. The second topic is an inverse problem in quantum chemistry. Here, we want to determine some features of a quantum system. To this aim, the system is ligthed by a known and fixed Laser field. In this framework, the data of the inverse problem are the states before and after the Laser lighting. A local existence result is given, together with numerical methods for the solving.

Page generated in 0.045 seconds