31 |
Reaktive Molekularstrahlepitaxie und Charakterisierung von GaN/(Al,Ga)N-Heterostrukturen auf SiC(0001)Thamm, Andreas 17 September 2001 (has links)
Thema dieser Arbeit ist die Synthese von hexagonalen GaN/(Al,Ga)N-Heterostrukturen mittels reaktiver Molekularstrahlepitaxie (MBE) auf SiC(0001)-Substraten. Der Einfluß der Wachstumsbedingungen auf die strukturellen, morphologischen, optischen und elektrischen Eigenschaften der Proben wird untersucht. Die reaktive MBE von Gruppe-III-Nitriden nutzt die katalytische Dekomposition von NH3 als Stickstoff-Precursor. Im Vergleich zur plasma-unterstützten MBE und metall-organischen Gasphasenepitaxie (MOCVD) ist dieses Abscheideverfahren eine noch wenig etablierte Methode, um kristalline (Al,Ga)N-basierende Heterostrukturen herzustellen. Es wird eine Einführung in das Verfahren und die Oberflächenchemie der reaktiven MBE gegeben. Die Synthese von (Al,Ga)N-Pufferschichten auf SiC(0001) wird diskutiert. Eine Prozedur zur Präparation der SiC-Substrate wird vorgestellt. Eine Methode zur in situ-Kontrolle der Wachstumsparameter wird erarbeitet, die auf der Beugung von hochenergetischen Elektronen (RHEED) beruht und ein reproduzierbares (Al,Ga)N-Wachstum ermöglicht. Die Pufferschichten haben atomar glatte Oberflächen, die sich für eine weitere Abscheidung von GaN/(Al,Ga)N-Heterostrukturen eignen. Es werden die strukturellen und optischen Eigenschaften solcher Strukturen studiert und mit Proben verglichen, die mittels plasma-unterstützter MBE und MOCVD hergestellt werden. Im Vergleich zu den übrigen III-V-Halbleitern zeichnen sich die hexagonalen Nitride besonders durch die Größe ihrer elektrischen Polarisationsfelder aus. GaN/(Al,Ga)N-Multiquantenwell-Strukturen (MQWs) mit unterschiedlichen Well-Dicken werden auf GaN- und (Al,Ga)N-Pufferschichten gewachsen. Es werden die Auswirkungen der spontanen Polarisation und Piezopolarisation auf die optischen Eigenschaften der MQWs studiert. Im speziellen wird - experimentell und theoretisch - gezeigt, daß die polarisationsbedingten elektrischen Felder in GaN/(Al,Ga)N-MQWs nicht durch hohe Dichten von freien Ladungsträgern abgeschirmt werden können. Ferner wird der Einfluß der GaN/(Al,Ga)N-Grenzflächenmorphologie auf die optischen Eigenschaften studiert. Das Wachstum von (Al,Ga)N/GaN-Heterostruktur-Feldeffekt-Transistoren (HFETs) auf semiisolierenden (Al,Ga)N-Puffern wird untersucht. Diese Heterostrukturen zeichnen sich durch eine geringe Dichte an Fadenversetzungen (1-2 x 108 cm-2) und durch das Fehlen jeglicher Parallelleitfähigkeit aus. Für diese Strukturen, die Beweglichkeiten von bis zu 750 cm2/Vs bei Raumtemperatur zeigen, werden Simulationen der temperaturabhängigen Beweglichkeiten unter Beachtung aller wichtigen Streumechanismen durchgeführt. In Übereinstimmung mit der Sekundärionenspektrometrie an diesen Proben wird belegt, daß die Transistoreigenschaften dominant durch tiefe Störstellen - sehr wahrscheinlich As - begrenzt werden. Es wird die Synthese von spannungskompensierten GaN/(Al,Ga)N-Bragg-Reflektoren mit Reflektivitäten von über 90% im blauen Spektralbereich vorgestellt. Die experimentelle Realisierung basiert auf der exakten Bestimmung der individuellen Schichtdicken durch die Simulation der gemessenen Röntgenbeugungsprofile und Reflektivitätsspektren. Die mittels Laserstreuung abgeschätzten Reflektivitätsverluste können durch NH3-reiche Synthesebedingungen reduziert werden. / In this thesis, we investigate the synthesis of wurtzite (Al,Ga)N heterostructures on SiC(0001) by reactive molecular beam epitaxy (MBE). We examine the impact of growth conditions on the structural, morphological, optical and electrical properties of the films. MBE of group-III nitrides is almost entirely based on the use of an N2 plasma discharge for providing reactive N. However, an alternative and attractive candidate for producing N radicals is NH3, which decomposes on the growth front by a catalytic reaction even at comparatively low temperatures. The basic growth technique and surface chemistry of reactive MBE is introduced. The deposition of (Al,Ga)N buffer layers on SiC(0001) substrates is discussed. An ex-situ cleaning procedure for the SiC substrates is presented. An in-situ method for the reproducible growth of these buffers layers is developed based on reflection high-energy electron diffraction (RHEED). The layers have atomically smooth surfaces well suited for the growth of GaN/(Al,Ga)N heterostructures. The structural and optical properties of these buffers are compared to such layers grown by plasma-assisted MBE and metal organic vapor phase deposition (MOCVD), respectively. Compared to other III-V semiconductors hexagonal nitrides exhibit huge electrical polarization fields. GaN/(Al,Ga)N multiple quantum wells (MQWs) with different well thicknesses are deposited on GaN and (Al,Ga)N buffer layers, respectively. It is demonstrated that the electric field in the quantum wells (QWs) leads to a quantum-confined Stark shift of the QW emission, which thus can fall well below the bulk GaN band-gap energy. In the opposite, it is proved that the strain state of the QWs alone has little impact on the electric fields in MQWs. The optical properties of these heterostructures are studied by stationary and time-resolved photoluminescence and compared with the results of self-consistent Schrödinger-Poisson calculations. It is shown that the recombination dynamics in heavily doped MQWs (7 x 1018 cm-3) is still controlled by residual fields, contrary to the common assumption that flat-band conditions are achieved at this doping level. Furthermore, the influence of the interface roughness on the QW emission widths is analyzed. The growth of (Al,Ga)N/GaN heterostructure field effect transistors (HFETs) on semi-insulating (Al,Ga)N buffers is studied. Temperature dependent Hall measurements show a mobility of up to 750 cm2/Vs and 1400 cm2/Vs at 300 K and 77 K, respectively. Transmission electron microscopy reveals the (Al,Ga)N/GaN interface to be abrupt and the dislocation density to be too low to limit the HFET mobility. However, secondary ion mass spectroscopy detects a significant concentration of As in the channel region. Indeed, an excellent fit to the temperature dependence of the mobility is obtained by including scattering with As. The synthesis and analysis of highly reflective and conductive GaN/(Al,Ga)N Bragg reflectors is examined. The realization of these Bragg mirrors is based on the exact determination of the structural parameters by simulating x-ray diffraction profiles and corresponding reflectivity spectra. To prevent cracking from these thick stacks, a concept of strain-balanced multilayer structure is employed. It is demonstrated that the difference between the theoretical and the measured maximum reflectivity can be minimized by growing the Bragg mirrors under NH3 stable growth conditions.
|
32 |
Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings / Anregung von Polarisationsmoden in optischen Fasern mit angepasstem Brechzahlprofil durch langperiodische akustische GitterZeh, Christoph 15 November 2013 (has links) (PDF)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution.
The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances.
The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity.
Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy. / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen.
Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt.
Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht.
In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.
|
33 |
Záření soustav antén v blízké zóně / Radiation of antenna array in near-field areaHermany, Jiří January 2008 (has links)
The aim of my diploma thesis is to analyze the antenna array radiation and to produce the antenna array radiation computation program. The program should display the electric and magnetic intensity and radiation power density distribution over the planar or cylindrical surface in the near-field area. The antenna array analyzed in this paper consists of a number of elementary dipoles placed in a row with a reflector which represents the conductive board situated in parallel to the row of dipoles. The demonstration program was built in MATLAB and allows computing and displaying the computed values components of antenna array radiation on the planar or the cylindrical surface. The program also allows saving computed values, saving displayed graphs, or saving the adjusted parameters of antenna array. The created program can be used for the presentation of the antenna array radiation in a school laboratory or for the graphical representation when a new antenna is designed.
|
34 |
Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings: Development and ApplicationZeh, Christoph 05 November 2013 (has links)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution.
The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances.
The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity.
Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy.:Abstract / Kurzfassung iii
Table of contents v
1 Introduction 1
2 Fundamentals of optical waveguides 5
2.1 Introduction 5
2.2 Maxwell’s equations and vector wave equations 5
2.3 Optical waveguides 7
2.3.1 Dielectric waveguides 7
2.3.2 Metallic waveguides 9
2.4 Numerical calculation of modes by the multiple multipole program 10
2.4.1 Representation of simulated mode fields 11
2.5 Overview of coupled mode theory 14
2.5.1 Coupled mode equations 14
2.5.2 Co-directional coupling 15
2.6 Summary and conclusions 16
3 Polarization control for fundamental and higher order modes 17
3.1 Introduction 17
3.2 Description of light polarization 18
3.2.1 Stokes parameters and the polarization ellipse 18
3.2.2 Polarization of light beams in free space 20
3.2.3 Polarization of light beams in optical fibers 21
3.3 Short overview of cylindrical vector beam generation 22
3.4 Excitation of cylindrical vector beams in optical fibers 27
3.4.1 Free-beam techniques 27
3.4.2 In-fiber techniques 29
3.5 Polarization control in optical fibers 30
3.5.1 Phase matching and the beat length 30
3.5.2 Polarization-maintaining single-mode fibers 32
3.5.3 Higher-order mode polarization-maintaining fibers 32
3.6 Summary and conclusions 34
4 Simulation of core-ring-fibers 36
4.1 Introduction 36
4.2 Model geometries for index-tailored optical fiber 37
4.2.1 Special fiber and fabrication 37
4.2.2 Elliptical core boundaries 39
4.2.3 Overview of the applied MMP Models 41
4.3 Simulation results for circular core geometry 43
4.3.1 Mode fields 43
4.3.2 Scaling of the core radii 43
4.3.3 Wavelength dependence 48
4.4 Simulation results for non-circular geometry 50
4.4.1 Mode fields 50
4.4.2 Effects of individual rotation angles 53
4.4.3 Wavelength dependence 56
4.5 Summary and conclusions 61
5 Long period fiber gratings 63
5.1 Introduction 63
5.2 Principle of long-period fiber gratings 64
5.2.1 Results from coupled mode theory 64
5.2.2 Types of long-period gratings 65
5.2.3 Properties of acoustic long-period fiber gratings 67
5.3 Acoustic long-period grating setup 68
5.3.1 Transducer 69
5.3.2 Mechanical coupling 72
5.3.3 Acoustic dispersion of an optical fiber 75
5.3.4 Optical setup 77
5.3.5 Comparison to other acoustic LPG geometries 81
5.4 Experimental results 82
5.4.1 Transmission spectra 82
5.4.2 Discussion of transmission results 88
5.4.3 Direct mode field observation 93
5.4.4 Discussion of mode field observations 97
5.4.5 Time behavior and grating amplitude modulation 99
5.5 Summary and conclusions 101
6 Application of higher order fiber modes for far-field microscopy 104
6.1 Introduction 104
6.2 Complex beams in high-resolution far-field microscopy 104
6.3 Theoretical considerations 106
6.4 Experimental details 111
6.5 Results 114
6.6 Discussion 118
6.7 Summary and conclusions 122
7 Summary and outlook 124
Acknowledgments 139
Publications related to this work 142
List of figures 144
List of tables 150
List of acronyms 151 / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen.
Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt.
Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht.
In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.:Abstract / Kurzfassung iii
Table of contents v
1 Introduction 1
2 Fundamentals of optical waveguides 5
2.1 Introduction 5
2.2 Maxwell’s equations and vector wave equations 5
2.3 Optical waveguides 7
2.3.1 Dielectric waveguides 7
2.3.2 Metallic waveguides 9
2.4 Numerical calculation of modes by the multiple multipole program 10
2.4.1 Representation of simulated mode fields 11
2.5 Overview of coupled mode theory 14
2.5.1 Coupled mode equations 14
2.5.2 Co-directional coupling 15
2.6 Summary and conclusions 16
3 Polarization control for fundamental and higher order modes 17
3.1 Introduction 17
3.2 Description of light polarization 18
3.2.1 Stokes parameters and the polarization ellipse 18
3.2.2 Polarization of light beams in free space 20
3.2.3 Polarization of light beams in optical fibers 21
3.3 Short overview of cylindrical vector beam generation 22
3.4 Excitation of cylindrical vector beams in optical fibers 27
3.4.1 Free-beam techniques 27
3.4.2 In-fiber techniques 29
3.5 Polarization control in optical fibers 30
3.5.1 Phase matching and the beat length 30
3.5.2 Polarization-maintaining single-mode fibers 32
3.5.3 Higher-order mode polarization-maintaining fibers 32
3.6 Summary and conclusions 34
4 Simulation of core-ring-fibers 36
4.1 Introduction 36
4.2 Model geometries for index-tailored optical fiber 37
4.2.1 Special fiber and fabrication 37
4.2.2 Elliptical core boundaries 39
4.2.3 Overview of the applied MMP Models 41
4.3 Simulation results for circular core geometry 43
4.3.1 Mode fields 43
4.3.2 Scaling of the core radii 43
4.3.3 Wavelength dependence 48
4.4 Simulation results for non-circular geometry 50
4.4.1 Mode fields 50
4.4.2 Effects of individual rotation angles 53
4.4.3 Wavelength dependence 56
4.5 Summary and conclusions 61
5 Long period fiber gratings 63
5.1 Introduction 63
5.2 Principle of long-period fiber gratings 64
5.2.1 Results from coupled mode theory 64
5.2.2 Types of long-period gratings 65
5.2.3 Properties of acoustic long-period fiber gratings 67
5.3 Acoustic long-period grating setup 68
5.3.1 Transducer 69
5.3.2 Mechanical coupling 72
5.3.3 Acoustic dispersion of an optical fiber 75
5.3.4 Optical setup 77
5.3.5 Comparison to other acoustic LPG geometries 81
5.4 Experimental results 82
5.4.1 Transmission spectra 82
5.4.2 Discussion of transmission results 88
5.4.3 Direct mode field observation 93
5.4.4 Discussion of mode field observations 97
5.4.5 Time behavior and grating amplitude modulation 99
5.5 Summary and conclusions 101
6 Application of higher order fiber modes for far-field microscopy 104
6.1 Introduction 104
6.2 Complex beams in high-resolution far-field microscopy 104
6.3 Theoretical considerations 106
6.4 Experimental details 111
6.5 Results 114
6.6 Discussion 118
6.7 Summary and conclusions 122
7 Summary and outlook 124
Acknowledgments 139
Publications related to this work 142
List of figures 144
List of tables 150
List of acronyms 151
|
Page generated in 0.0593 seconds