11 |
Laser cooling and manipulation of antimatter in the AEgIS experiment / Manipulation et refroidissement laser de l'antimatière, au sein de l'expérience AEgISYzombard, Pauline 24 November 2016 (has links)
Ma thèse s’est déroulée dans le cadre de la collaboration AEgIS, une des expériences étudiant l’antimatière au CERN. L’objectif final est de mesurer l’effet de la gravité sur un faisceau froid d’antihydrogène (Hbar). AEgIS se propose de créer les Hbar froids par échange de charges entre un atome de Positronium (Ps) excité (état de Rydberg) et un antiproton piégé : 〖Ps〗^*+ pbar → (H^*)⁻ + e⁻. L’étude de la physique du Ps est cruciale pour AEgIS, et demande des systèmes lasers adaptés. Pendant ma thèse, ma première tâche a été de veiller au bon fonctionnement des systèmes lasers de l’expérience. Afin d’exciter le positronium jusqu’à ses états de Rydberg (≃20) en présence d’un fort champ magnétique (1 T), deux lasers pulsés spectralement larges ont été spécialement conçu. Nous avons réalisé la première excitation par laser du Ps dans son niveau n=3, et prouvé une excitation efficace du nuage de Ps vers les niveaux de Rydberg n=16-17. Ces mesures, réalisées dans la chambre à vide de test d’AEgIS, à température ambiance et pour un faible champ magnétique environnant, sont la première étape vers la formation d’antihydrogène. Le prochain objectif est de répéter ces résultats dans l’enceinte du piège à 1 T, où les antihydrogènes seront formés. Pour autant, malgré l’excitation Rydberg des Ps pour accroître la section efficace de collision, la production d’antihydrogène restera faible, et la température des H bar formés sera trop élevée pour toute mesure de gravité. Pendant ma thèse, j’ai installé au CERN un autre système laser prévu pour pratiquer une spectroscopie précise des niveaux de Rydberg du Ps. Ce système excite des transitions optiques qui pourraient convenir à un refroidissement Doppler : la transition n=1 ↔ n=2. J’ai étudié la possibilité d’un tel refroidissement, en procédant à des simulations poussées pour déterminer les caractéristiques d’un système laser adapté La focalisation du nuage de Ps grâce au refroidissement des vitesses transverses devrait accroitre le recouvrement des positroniums avec les antiprotons piégés, et ainsi augmenter grandement la production d’Hbar. Le contrôle du refroidissement et de la compression du plasma d’antiprotons est aussi essentiel pour la formation des antihydrogènes. Pendant les temps de faisceaux d’antiprotons de 2014 et 2015, j’ai contribué à la caractérisation et l’optimisation des procédures pour attraper et manipuler les antiprotons, afin d’atteindre des plasmas très denses, et ce, de façon reproductible. Enfin, j’ai participé activement à l’élaboration d’autre projet à l’étude AEgIS, qui vise aussi à augmenter la production d’antihydrogène : le projet d’un refroidissement sympathique des antiprotons, en utilisant un plasma d’anions refroidis par laser. J’ai étudié la possibilité de refroidir l’ion moléculaire C₂⁻, et les résultats de simulations sont encourageants. Nous sommes actuellement en train de développer au CERN le système expérimental qui nous permettra de faire les premiers tests de refroidissement sur le C₂⁻. Si couronné de succès, ce projet ne sera pas seulement le premier résultat de refroidissement par laser d’anions, mais ouvrira aussi les portes à une production efficace d’antihydrogènes froids. / My Ph.D project took place within the AEgIS collaboration, one of the antimatter experiments at the CERN. The final goal of the experiment is to perform a gravity test on a cold antihydrogen (Hbar) beam. AEgIS proposes to create such a cold Hbar beam based on a charge exchange reaction between excited Rydberg Positronium (Ps) and cold trapped antiprotons: 〖Ps〗^* + pbar → (H^*)⁻ + e⁻. Studying the Ps physics is crucial for the experiment, and requires adapted lasers systems. During this Ph.D, my primary undertaking was the responsibility for the laser systems in AEgIS. To excite Ps atom up to its Rydberg states (≃20) in presence of a high magnetic field (1 T), two broadband pulsed lasers have been developed. We realized the first laser excitation of the Ps into the n=3 level, and demonstrated an efficient optical path to reach the Rydberg state n=16-17. These results, obtained in the vacuum test chamber and in absence of strong magnetic field, reach a milestone toward the formation of antihydrogen in AEgIS, and the immediate next step for us is to excite Ps atoms inside our 1 T trapping apparatus, where the formation of antihydrogen will take place. However, even once this next step will be successful, the production rate of antihydrogen atoms will nevertheless be very low, and their temperature much higher than could be wished. During my Ph.D, I have installed further excitation lasers, foreseen to perform fine spectroscopy on Ps atoms and that excite optical transitions suitable for a possible Doppler cooling. I have carried out theoretical studies and simulations to determine the proper characteristics required for a cooling laser system. The transverse laser cooling of the Ps beam will enhance the overlap between the trapped antiprotons plasma and the Ps beam during the charge-exchange process, and therefore drastically improve the production rate of antihydrogen. The control of the compression and cooling of the antiproton plasma is also crucial for the antihydrogen formation. During the beam-times of 2014 and 2015, I participated in the characterization and optimization our catching and manipulation procedures to reach highly compressed antiproton plasma, in repeatable conditions. Another project in AEgIS I took part aims to improve the formation rate of ultracold antihydrogen, by studying the possibility of a sympathetically cooling of the antiprotons using a laser-cooled anion plasma. I investigated some laser cooling schemes on the C₂⁻ molecular anions, and the simulations are promising. I actively contribute to the commissioning of the test apparatus at CERN to carry on the trials of laser cooling on the C₂⁻ species. If successful, this result will not only be the first cooling of anions by laser, but will open the way to a highly efficient production of ultracold antihydrogen atoms.
|
12 |
Etudes théoriques des atomes froids : du refroidissement laser aux condensats de Bose-EinsteinCastin, Yvan 01 July 2005 (has links) (PDF)
Notre activité de recherche, commencée en 1988, comporte deux périodes. La première, jusqu'en 1995, fut consacrée à la théorie du refroidissement d'atomes par laser : nous avons effectué une étude entièrement quantique du refroidissement à gradient de polarisation, et grâce à la méthode des fonctions d'onde Monte-Carlo, reformulation stochastique de l'équation pilote que nous avons contribué à développer, nous avons pu reproduire les résultats expérimentaux à trois dimensions. La deuxième période, commencée en 1995, est consacrée à la théorie des gaz quantiques, en particulier des condensats de Bose-Einstein : nous avons clarifié le concept de phase d'un champ atomique et prédit une dynamique quantique non triviale de cette phase; nous avons trouvé des solutions par changement d'échelle décrivant l'évolution d'un gaz quantique dans un potentiel harmonique dépendant du temps; nous avons découvert le mécanisme de formation des réseaux de tourbillons quantiques à l'oeuvre dans les expériences du groupe de Jean Dalibard; nous avons étudié quelques propriétés classiques et quantiques des solitons d'ondes de matière et nous avons proposé une méthode ayant permis la première observation expérimentales de ces solitons; nous avons développé de nouveaux outils pour la théorie des gaz quantiques, comme des méthodes de champ classique, de Monte-Carlo quantique et une extension de la méthode de Bogoliubov aux quasi-condensats en dimensionalité réduite.
|
13 |
A New Metastable Helium Machine : An Investigation into the Attributes of Trapping, Cooling and Detecting Metastable Helium / machine pour métastable hélium : Une enquête sur les attributs de piégeage, de refroidissement et de détection de métastable héliumHoendervanger, Lynn 03 October 2014 (has links)
Cette thèse décrit le travail accompli au cours des trois dernières années sur la nouvelle expérience d’Hélium métastable de l'Institut d'Optique à Palaiseau.Le premier chapitre décrit une étude visant à améliorer à la fois l'efficacité et la précision du système de détection par galettes à micro-canaux (MCP). Nous avons fait des mesures avec des galettes recouvertes d'une couche d'or sur la face avant, obtenant un accroissement de l'efficacité de détection mais également une réduction de la précision. L'ajout d'une tension intermédiaires entre les deux galettes empilées a au contraire améliorer à la fois l'efficacité et la précision des MCP, en l’absence d’une couche d’or.Le deuxième chapitre est consacré à la construction de l'appareil expérimental pour le refroidissement et le piégeage d’atomes. L’excitation de l'état fondamental de l’Hélium à l'état métastable est décrite, ainsi que la collimation et le refroidissement ultérieur par Zeeman lent du faisceau atomique chaud résultant. Le faisceau ralenti est alors capturé dans un piège magnéto-optique (PMO), dans lequel nous avons capturé 8x108 atomes.Dans le troisième chapitre une étude originale du refroidissement Doppler tridimensionnel dans un PMO et une mélasse désaccordée vers le rouge de la transition atomique est discutée. L’atome d’Hélium métastable est unique et ses propriétés ont permis une telle étude. En effet, les faibles densités atomiques impliquent qu’il n'y a pas de diffusion multiple de photons d’une part, et la faible masse et la faible largeur de la transition 23S1 -> 23P2 rend inefficace les processus de refroidissement sous la limite Doppler. Ces conditions nous ont permis d’observer pour la première fois à trois dimensions un gaz refroidit dans le régime Doppler.Le quatrième chapitre présente une étude sur les collisions dans un piège magnéto-optique d’Hélium métastable. Les collisions Penning induites par la lumière, en particulier à des intensités élevées et à des fréquences proches de la fréquence de transition, sont responsables de pertes élevées d’atomes piégés. Nous mesurons le coefficient de taux associé à ces pertes, Ksp = 2,8 ± 0,4 x 10-7cm3/ s. / This thesis describes the work done over the past three and a half years on the new metastable helium experiment at the Institut d'Optique in Palaiseau. In the first chapter it describes a study to improve both the efficiency and the accuracy of the Microchannel Plate (MCP) detection system. We have experimented with adding a gold layer on the top of the input plate, something that we have found increases the efficiency but also decreases the accuracy. The addition of a voltage between the two stacked plates has been shown to both raise the efficiency and improve the accuracy in non-coated MCPs.The second chapter is devoted to the construction of the experimental apparatus. Here the excitation of ground state helium to its metastable state is described, as well as the subsequent collimation and cooling by Zeeman slower of the resulting hot atomic beam. The slowed beam is then captured in a Magneto-Optical Trap, in which we have captured 8x108 atoms.In the third chapter an original study on three-dimensional Doppler cooling in a red-detuned molasses and in the Magneto-Optical trap is presented. The metastable helium system is unique as there is no multiple scattering of photons and there are no sub-Doppler effects. This allows for a never before seen experimental realisation of pure Doppler cooling theory. The fourth chapter describes a study on collisions in a magneto-optical trap of metastable helium. Light-induced Penning collisions are responsible for high trap losses at high intensities and at frequencies close to the transition frequency. We measure the constant rate coefficient to Ksp = 2.8 ± 0.4 x 10-7cm3/s.
|
14 |
VERS UNE MEMOIRE QUANTIQUE AVEC DES IONS PIEGESRemoville, Sébastien 17 September 2009 (has links) (PDF)
Le domaine de l'information quantique tire partie des lois de la mécanique quantique pour élaborer des protocoles de traitement de l'information originaux. Des réseaux qui transportent ce type d'information ont déjà été démontrés mais leur portée est cependant limitée à une centaine de kilomètres à cause des pertes en ligne. Pour franchir cette limite l'élément clef à développer est une mémoire quantique, c'est à dire un milieu atomique capable de stocker un état quantique et dont les performances reposent conjointement sur un excellent couplage avec la lumière (pour les phases d'écriture ou de lecture) et un temps de cohérence important (pour la phase de stockage). Les ions piégés constituent un candidat intéressant pour l'implémentation d'une mémoire quantique, notamment car ils peuvent présenter d'excellentes propriétés d'isolation par rapport à leur environnement. La difficulté à réaliser une mémoire quantique avec des ions piégés tient en particulier à l'obtention d'un couplage important entre l'ensemble d'ions et la lumière, c'est à dire l'obtention d'un nuage atomique le plus dense et froid possible. Durant le travail de thèse, nous avons développé un ensemble expérimental capable de confiner, refroidir et observer plusieurs millions d'ions. Une méthode originale de chargement du piège fondée sur l'absorption simultanée de deux photons a été développée, nous permettant de limiter l'énergie initiale d'un ion et la pollution de l'environnement d'un tel nuage. Un piège de Paul linéaire de dimensions centimétriques a été dessiné et fabriqué au laboratoire pour confiner les ions et faciliter le régime de très faible température. En utilisant une technique de refroidissement laser, nous avons atteint ce régime dans lequel les ions adoptent une structure spatiale périodique, le cristal de Wigner. Cette structure a été observée dans des chaînes contenant quelques ions et dans des nuages dont la population dépasse le million. Les paramètres pertinents qui gouvernent la densité et la stabilité de ces cristaux ont été identifiés. Ces travaux sont une étape très encourageante pour l'obtention d'un couplage important entre les ions et la lumière, et la mise en oeuvre d'un protocole de mémoire quantique.
|
15 |
Pompage optique et refroidissement laser de la vibration de molecules froidesViteau, Matthieu 05 December 2008 (has links) (PDF)
Cette thèse présente différentes études sur la formation et la détection de molécules froides. Différents états moléculaires de grandes élongations, pour la molécule Cs2, sont étudié par spectroscopie de photoassociation et d'ionisation. Ces différentes études ont permis d'affiner notre compréhension des mécanismes de photoassociation d'atomes froids formant des molécules dans l'état fondamental triplet (a 3Σu+).<br />Une détection non sélective a été développée, pour la recherche de mécanismes de formation de molécules froides dans l'état fondamental singulet avec peu de vibration. Avec cette nouvelle détection, un nouveau mécanisme de formation de molécules par photoassociation d'atomes froids de césium a été trouvé. Celui-ci permet de former efficacement des molécules dans une distribution de niveaux avec très peu de vibration dans l'état fondamental (X 1Σg+).<br />En utilisant un laser femtoseconde (large spectralement) façonné, un refroidissement vibrationnel des molécules a été démontré, permettant la formation de molécules froides sans vibrations. Le laser femtoseconde, permet d'exciter les nombreux niveaux vibrationnels, créés par photoassociation, il réalise ainsi un pompage optique des molécules. Le laser est façonné de manière à rendre l'état de vibration zéro, noir pour ce laser, et ainsi accumuler toutes les molécules vers ce seul état. <br />Ce résultat est également simulé par un model théorique simple. Cette simulation permet de généraliser l'idée au refroidissement de la rotation des molécules. <br /><br />Une partie (résumée) présente, en s'appuyant sur les différents articles publiés, les études sur les interactions dipôle-dipôle, à grandes portées, entre atomes de Rydberg.
|
16 |
Transport et relaxation d'atomes de césium : oscillations de Bloch et résonance de diffusionBen_dahan, Maxime 02 October 1997 (has links) (PDF)
L'objet de cette thèse est l'étude d'effets quantiques avec des atomes de césium ultrafroids. Dans une première partie, nous décrivons une expérience étudiant la dynamique d'atomes de césium refroidis à 10 nanoKelvins dans un potentiel périodique d'origine lumineuse. A cette température, la longueur de cohérence, qui traduit la délocalisation des atomes, est plus grande que la période spatiale du potentiel. Ce système constitue alors un outil de choix pour l'étude des propriétés de transport cohérent. Nous avons ainsi pu observer les oscillations de Bloch d'atomes de césium. Cet effet purement quantique a été prédit initialement dans le cadre de la phvsique des solides. Il indique que les particules dans le potentiel périodique ont un mouvement oscillant lorsqu'elles sont soumises à une force extérieure constante Au delà de cette observation, nous avons également développé une technique d'accélération cohérente des atomes, susceptible de trouver des applications en interféromètrie atomique et pour des expériences de haute résolution. Dans une deuxième partie, nous avons étudié le comportement d'un nuage d'atomes confiné dans un piège magnétique. En mesurant les processus de thermalisation de ce nuage, nous avons déterminé la section efficace de collision élastique entre atomes pour des températures comprises entre 5 et 50 μK. Les résultats indiquent une forte dépendance en énergie de la section efficace, qui traduit une résonance de diffusion en onde s, liée à l'existence d'un niveau lié (ou virtuel) dans le potentiel d'interaction Cs-Cs très proche du continuum. Nous en avons déduit une limite inférieure de 260 a_0 pour la valeur absolue de la longueur de diffusion dans l'état triplet. Cette valeur est bien plus grande que pour les autres atomes alcalins et ce résultat devrait avoir des conséquences importantes pour les expériences de refroidissement évaporatif du césium.
|
17 |
Refroidissement laser sub-recul par résonances noires:-exp. avec des atomes d'hélium métastables,-approches Monte-Carlo quantique et vols de LévyBardou, François 08 March 1995 (has links) (PDF)
Ce mémoire présente de nouvelles approches expérimentales et théoriques du refroidissement laser sub-recul par résonances noires. L'énergie de recul est l'énergie cinétique communiquée à un atome initialement immobile par l'absorption ou l'émission d'un seul photon. C'est une échelle importante dans le refroidissement d'atomes par laser, franchie pour la première fois en 1988, sur un jet d'hélium métastable, grâce à la méthode des résonances noires sélectives en vitesse. Ce travail porte sur les développements de cette méthode, d'une part dans le régime des temps longs, d'autre part à plusieurs dimensions. Le nouveau schéma expérimental repose sur la réalisation d'un piège laser d'atomes d'hélium métastables ultrafroids, à partir duquel on lâche en chute libre le nuage d'atomes piégés, dont les vitesses autorisent des temps d'interaction accrus par deux ordres de grandeur. Les champs magnétiques ont été compensés à un milligauss près par des expériences d'effet Hanle mécanique. Les premières expériences effectuées avec le nouveau dispositif ont permis d'atteindre un quarantième de l'énergie de recul (100 nanokelvins) à une dimension. La limite du recul à deux dimensions a pu être franchie pour la première fois (un vingtième de l'énergie du recul, soit 200 nanokelvins) Sur le plan théorique, on a développé un nouveau type de simulations Monte-Carlo quantiques beaucoup plus efficaces que la résolution des équations de Bloch optiques On a pu explorer ainsi le régime des temps longs. Ces simulations ont suggéré une approche statistique complètement nouvelle du problème, basée sur les statistiques de Lévy récemment introduites pour étudier la diffusion anormale. Cette approche a permis de confirmer une conjecture prédisant une décroissance de la température atteinte comme l'inverse du temps d'interaction. Elle fournit également des résultats analytiques nouveaux, par exemple sur la proportion d'atomes refroidis ou sur le rôle de la dimensionnalité.
|
18 |
Refroidissement laser subrecul au nanokelvin : mesure directe de la longueur de cohérence spatiale. Nouveaux tests des statistiques de Lévy.Saubamea, Bruno 07 December 1998 (has links) (PDF)
Ce mémoire de thèse présente une nouvelle méthode de mesure de la température d'atomes ultra-froids à-partir de la fonction d'autocorrélation spatiale des paquets d'ondes atomiques. Nous déterminons ainsi la température d'atomes d'hélium 4 métastables refroidis par résonances noires sélectives en vitesse, une méthode qui refroidit les atomes en dessous de la température de recul liée à l'émission ou l'absorption d'un seul photon par un atome au repos. Un atome ainsi refroidi est préparé dans une superposition cohérente de deux paquets d'ondes d'impulsions moyennes opposées, initialement superposés et qu'on laisse ensuite se séparer. En mesurant la décroissance temporelle de leur recouvrement, nous avons accès à la transformée de Fourier de la distribution d'impulsion des atomes. Nous pouvons ainsi mesurer des températures aussi basses que 5 nK, soit 800 fois plus petites que la température de recul. Par ailleurs nous étudions en détail la forme exacte de la distribution d'impulsions et comparons les résultats expérimentaux avec deux approches théoriques différentes : une simulation Monte Carlo quantique et un modèle analytique du refroidissement basé sur les statistiques de Lévy. Nous comparons la forme de raie calculée avec les résultats des simulations puis confrontons séparément chacune des approches théoriques aux données expérimentales. Un très bon accord est trouvé entre tous ces résultats. Nous démontrons ainsi la validité du modèle statistique du refroidissement subrecul et, pour la première fois, mettons en évidence expérimentalement certaines de ces caractéristiques, comme l'absence d'état stationnaire, l'autosimilarité et le caractère non lorentzien de la distribution d'impulsion des atomes refroidis, tous ces aspects étant en relation directe avec le caractère non ergodique du refroidissement subrecul.
|
19 |
PHARAO: ÉTUDE D'UNE HORLOGE SPATIALE UTILISANT DES ATOMES REFROIDIS PAR LASER; RÉALISATION D'UN PROTOTYPELemonde, Pierre 19 November 1997 (has links) (PDF)
Les performances des horloges atomiques ont été considérablement<br />améliorées par l'utilisation d'atomes refroidis par laser. En<br />effet, il est possible d'observer ces atomes extrêmement lents<br />beaucoup plus longtemps que les atomes à température ambiante des<br />horloges conventionnelles. A ce jour, la meilleure horloge à<br />césium a une exactitude de $2\times 10^(-15)$ et une stabilité de<br />$1\times 10^(-15)$ sur trois heures d'intégration. Sur terre, le<br />temps d'observation est limité à une seconde environ par la<br />présence de gravité. L'objet de ce travail de thèse est l'étude<br />d'une horloge à atomes froids fonctionnant en impesanteur. Dans un<br />premier temps, nous montrons comment la micro-gravité peut<br />conduire à une amélioration des performances de l'horloge avec un<br />temps d'observation des atomes de plusieurs secondes. Les<br />performances ultimes d'une horloge à atomes froids dans l'espace<br />sont étudiées. Atteindre une exactitude et une stabilité à un jour<br />de $1\times10^(-16)$ semble tout à fait réaliste à court terme. Le<br />problème de la méthode d'interrogation des atomes doit être<br />reconsidéré à ce niveau de performances et dans cet environnement<br />d'impesanteur. Nous introduisons la fonction de sensibilité<br />atomique pour le résoudre et comparer plusieurs méthodes<br />d'interrogation possibles. La deuxième partie de ce travail<br />présente un prototype de l'horloge spatiale. Compact et fiable, il<br />a été testé en absence de gravité au cours de vols paraboliques à<br />bord d'un avion. Cette expérience montre la faisabilité de<br />l'horloge spatiale.
|
20 |
Refroidissement Raman et vols de Lévy: Atomes de césium au nanoKelvinReichel, Jakob 28 June 1996 (has links) (PDF)
Les températures que l'on peut atteindre par refroidissement laser sub-recul d'atomes libres ne sont limitées que par le temps d'interaction. Cette thèse présente dans sa première partie une théorie du refroidissement sub-recul qui utilise les vols de Lévy, qui est confirmée par simulations Monte-Carlo et appliquée à la méthode du refroidissement Raman. Ce travail montre l'importance de la forme des impulsions Raman et donne la première expression quantitative de la température la plus basse que l'on peut atteindre avec une bonne efficacité dans un temps donné. En particulier, de simples impulsions carrées sont plus efficaces pour le refroidissement unidimensionnel que les impulsions Blackman utilisées auparavant. De plus, nous montrons comment la théorie et les simulations permettent de déterminer les valeurs optimales des paramètres tels que durée et désaccord des impulsions.<br /><br />Ces résultats nouveaux sont appliqués dans une expérience de refroidissement Raman unidimensionnel utilisant des atomes de césium. Le dispositif, qui utilise uniquement des diodes laser, comprend un piège magnéto-optique en cellule et deux lasers verrouillés en phase avec une différence de fréquence de 9.19 GHz pour exciter la transition Raman. En utilisant des impulsions carrées, on obtient une température unidimensionnelle de 2.8 nK avec une hauteur du pic à vitesse nulle qui est 10 fois celle de la distribution initiale. Nous avons atteint des températures encore plus basses, jusqu'à 0.8 nK, avec un gain légèrement inférieur. Ces résultats représentent à notre connaissance les plus basses températures atteintes par refroidissement laser. A ces températures, la fonction d'onde atomique est délocalisée sur plus de 10 longueurs d'onde optiques.<br /><br />Les applications d'un tel ensemble atomique ultrafroid vont de l'observation d'oscillations de Bloch d'atomes dans un potentiel périodique lumineux jusqu'à l'amélioration des horloges atomiques. Le refroidissement sub-recul d'atomes piégés dans un potentiel lumineux constitue une voie prometteuse pour la production d'un gaz quantique dégénéré avec des techniques purement optiques.
|
Page generated in 0.0989 seconds