21 |
Regulation und funktionelle Analyse der menschlichen Mismatchreparaturgene /-proteine am speziellen Beispiel von hMSH2 / Regulation and Functinal Analysis of the Human MIsmatch Repair Genes/ProteinesScherer, Stefan January 2003 (has links) (PDF)
Das menschliche MHS2 Gen ist eine sehr gut charakterisierte Komponente des Mismatch-Reparatur-Systems (MMR) und häufig mit der HNPCC Erkrankung assoziiert. Der Mechanismus über den MSH2 an der Karzinomentwicklung beteiligt ist, sind Defekte in der DNA-Reparatur. Es konnte gezeigt werden, dass Mutationen in den kodierenden Regionen dieses Gens direkt in die Mikrosatelliteninstabilität involviert sind. Generell ist MSH2 ein Teil des postreplikativen Reparatursystems der Zellen, und schützt so vor der Akkumulation von Mutationen. Dadurch wird die genetische Stabilität und Integrität gewährleistet. Ein anderer Teil der zellulären Krebsabwehr ist das p53 Tumorsuppressorgen. Ein möglicher DNA Schaden, der in der Lage ist, p53 zu aktivieren, ist UV-Licht. Eine weitere gut charakterisierte Komponente der zellulären UV Reaktion ist der Transkriptionsfaktor c-Jun. Ziel der Arbeit war es die Regulation und Signalfunktion von MSH2 näher zu charakterisieren. Dazu wurde der Promotor des Gens in ein Luziferase Promotorgenkonstrukt kloniert. Dieses Konstrukt wurde in menschliche Keratinozyten transfiziert, die nachfolgend mit UV bestrahlt wurden. Es konnte eine zeit- und dosisabhängige Hochregulation von MSH2 gezeigt werden. Diese Transkriptionserhöhung wurde von p53 initiiert, denn durch eine gezielte Mutation der p53-Bindungsstelle im MSH2 Promotor war dieser Effekt vollkommen aufgehoben. Interessanterweise war dieser Effekt von einem zusätzlichen Faktor abhängig, ohne den keine Hochregulation erkennbar war. Verantwortlich hierfür war der Transkriptionsfaktor c-Jun. Dadurch konnte eine funktionelle Interaktion von p53 und c-Jun in der transkriptionellen Aktivierung von hMSH2 gezeigt werden. Dieser zeit- und dosisabhängige Effekt war sowohl auf RNA als auch auf Proteinebene nachvollziehbar. Der größte Anstieg war bei 50 J/m2 zu verzeichnen, wohin gegen bei Verwendung von 75 J/m2 die Transkriptmenge geringer wurde, um bei 100 J/m2 erneut anzusteigen. Um diesen erneuten Anstieg des Proteins näher zu beschreiben wurden bei den stark bestrahlten Zellen TUNEL-Untersuchungen durchgeführt. Hierbei zeigte sich eine positive Korrelation zwischen der Menge an MSH2 Protein und an TUNEL-positiven apoptotischen Zellen. Um weiter zu zeigen, dass der zweite Anstieg des Proteins nicht mit einer Reparaturfunktion verbunden ist, wurde ein biochemisch basierter Test durchgeführt, welcher die Reparaturkapazität semiquantitativ beschreibt. Dabei konnte klar gezeigt werden, dass die mit 100 J/m2 bestrahlten Zellen keine Reparaturfunktion mehr erfüllen. FACS-Analysen und Zellfärbungen gegen Annexin V und mit Propidiumiodid bestätigten die stattfindende Apoptose in den Zellen. Eine weitere Komponente des MMR-Systems ist MSH6. MSH6 bildet mit MSH2 ein Dimer, welches den Fehler in der DNA erkennt und das weitere Reparaturprogramm einleitet. Die Expression dieses Proteins konnte nur bis zu einer Dosis von 50-75 J/m2 UV nachgewiesen werden. Im Gegensatz zu MSH2 war MSH6 nicht in 100 J/m2 bestrahlten Keratinozyten detektierbar. Um über die Lokalisation dieser Proteine mehr zu erfahren wurden Immunfärbungen gegen MSH2 durchgeführt. Es zeigte sich eine Translokation des Proteins vom Kern in das Zytoplasma in Korrelation zum zunehmenden DNA-Schaden durch höhere Dosen an UV-Licht. Dies stellt eine mögliche Verbindung zwischen dem Mismatch-Reparatursystem und apoptotischen Signalwegen dar. / MSH2 is a well-characterized component of the DNA mismatch repair system (MMR) frequently associated with Hereditary Nonpolyposis Colorectal Cancer (HNPCC). The mechanism of MSH2-induced cancer is via defects in DNA mismatch repair. Mutations in the coding region of the human gene (hMSH2) have been shown to be directly involved in microsatellite instability in HNPCC. The MSH2 gene is part of the post-replicative mismatch repair system that prevents the accumulation of spontaneous mutations, and thereby ensures the integrity and stability of the genome. Another component of the cancer prevention machinery is the p53 tumor suppressor. A relevant stress that activates p53 is UV-light. Another well known component of the mammalian UV response is the transcription factor c-Jun. To study the stress regulation and signaling function of hMSH2, we cloned the promoter region of hMSH2 in a luciferase reportergene construct. This construct was transfected in human keratinocytes. The cells were then irradiated with UV light. A time and dosage dependent upregulation of hMSH2 was seen. The transcription of the human mismatch repair gene was activated by p53. This activation was lost upon mutation of the p53 binding site. Interestingly this upregulation critically depends on functional interaction of p53 with c-Jun in the transcriptional control of the hMSH2 promoter. The same effect was seen in analyses of the endogenous hMSH2 gene on the RNA level as well as on the protein level. The highest hMSH2-expression was seen at 50 J/m2. At 75 J/m2 the hMSH2 expression level decreased. Surprisingly, at 100 J /m2 hMSH2 expression increased again. The same dosage dependent function was seen on the protein level. To address the question of a second function of hMSH2 in cells irradiated at high dose, TUNEL-assays were performed. A positive correlation between the level of hMSH2 protein and the number of apoptotic cells was found. To study the repair function of hMSH2 in highly irradiated cells, we used a biochemical mismatch repair assay system. Cells treated with high dosage of UV showed no repair activity in contrast to non-irradiated cells. Annexin V staining and FACS analysis confirmed the apoptotic status of these cells. It is well-known that hMSH6 is necessary for dimer formation with hMSH2 (MutSa) to detect DNA mismatches. So far there are little data on a possible involvement of hMSH6 in apoptosis. Therefore was performed an analysis of hMSH6 protein levels in irradiated cells, revealed that hMSH6 was expressed at doses up to 50 – 75 J/m2. In contrast no hMSH6 was detectable in UV-irradiated cells treated with 100 J/m2. In addition fluorescence immuno labelling of MSH2 revealed the subcellular translocation of the protein from the nucleus to the cytoplasm in apoptotic cells. This effect may indicate a possible link between the mismatch repair system and apoptotic pathways.
|
22 |
Nucleotide Excision Repair: From Recognition to Incision of damaged DNA / Nukleotid-Exzisions-Reparatur: Vom Erkennen zum Schneiden der geschädigten DNARoth, Heide Marie January 2011 (has links) (PDF)
The Nucleotide Excision Repair (NER) pathway is able to remove a vast diversity of structurally unrelated DNA lesions and is the only repair mechanism in humans responsible for the excision of UV induced DNA damages. The NER mechanism raises two fundamental questions: 1) How is DNA damage recognition achieved discriminating damaged from non damaged DNA? 2) How is DNA incision regulated preventing endonucleases to cleave DNA non specifically but induce and ensure dual incision of damaged DNA? Thus, the aim of this work was to investigate the mechanisms leading from recognition to incision of damaged DNA. To decipher the underlying process of damage recognition in a prokaryotic model system, the intention of the first part of this work was to co crystallize the helicase UvrB form Bacillus caldotenax together with a DNA substrate comprising a fluorescein adducted thymine as an NER substrate. Incision assays were performed to address the question whether UvrB in complex with the endonuclease UvrC is able to specifically incise damaged DNA employing DNA substrates with unpaired regions at different positions with respect to the DNA lesion. The results presented here indicate that the formation of a specific pre incision complex is independent of the damage sensor UvrA. The preference for 5’ bubble substrate suggests that UvrB is able to slide along the DNA favorably in a 5’ → 3’ direction until it directly encounters a DNA damage on the translocating strand to then recruit the endonuclease UvrC. In the second part of this work, the novel endonuclease Bax1 from Thermoplasma acidophilum was characterized. Due to its close association to archaeal XPB, a potential involvement of Bax1 in archaeal NER has been postulated. Bax1 was shown to be a Mg2+ dependent, structure specific endonuclease incising 3’ overhang substrates in the single stranded region close to the ssDNA/dsDNA junction. Site directed mutagenesis of conserved amino acids was employed to identify putative active site residues of Bax1. In complex with the helicase XPB, however, incision activity of Bax1 is altered regarding substrate specificity. The presence of two distinct XPB/Bax1 complexes with different endonuclease activities indicates that XPB regulates Bax1 incision activity providing insights into the physical and functional interactions of XPB and Bax1. / Die Nukleotid-Exzisions-Reparatur (NER) ist in der Lage, eine Vielfalt an strukturell unterschiedlichen DNA Schädigungen zu entfernen, und ist überdies der einzige DNA-Reparaturmechanismus im Menschen, der UV induzierte DNA-Schädigungen entfernen kann. Der NER Mechanismus impliziert zwei grundlegende Fragen: 1) Wie wird geschädigte DNA erkannt und worauf gründet sich die Unterscheidung zwischen geschädigter und nicht geschädigter DNA? 2) Wie wird das Schneiden der DNA reguliert? Wie wird unspezifisches Schneiden verhindert und sichergestellt, dass die geschädigte DNA auf beiden Seiten der Schädigung herausgeschnitten wird? Das Ziel dieser Arbeit war es daher, die Mechanismen zu untersuchen, die vom Erkennen zum Herausschneiden geschädigter DNA führen. Um im bakteriellen Modelsystem den zugrundeliegenden Prozess der Schadenserkennung zu entschlüsseln, sollte im ersten Teil dieser Arbeit die Helikase UvrB aus Bacillus caldotenax zusammen mit einem geschädigten DNA Substrat kristallisiert werden. Als Schädigung wurde ein Fluorescein-Molekül genutzt, das an eine Thymin-Base gekoppelt wurde. Biochemische Experimente wurden durchgeführt um herauszufinden, ob UvrB im Komplex mit der Endonuklease UvrC spezifisch geschädigte DNA schneiden kann. Dafür wurden DNA-Substrate eingesetzt, die ungepaarte Basen an verschiedenen Stellen bezüglich der DNA-Schädigung enthielten. Die hier gezeigten Ergebnisse deuten darauf hin, dass ein spezifischer Komplex gebildet werden kann, der auch unabhängig von dem Schadenssensor UvrA zum Schneiden der DNA befähigt ist. Die Schnitt-Präferenz für die 5‘ ungepaarte Region lässt vermuten, dass UvrB bevorzugt in 5‘→3‘ Richtung an der DNA entlanggleiten kann. Sobald UvrB auf eine Schädigung auf diesem DNA Strang trifft, wird die Endonuklease UvrC rekrutiert. Im zweiten Teil dieser Arbeit wurde die neuartige Endonuklease Bax1 aus Thermoplasma acidophilum charakterisiert. Aufgrund der engen Assoziation zu archaischem XPB wurde eine Beteiligung an der archaischen NER postuliert. Es konnte gezeigt werden, dass Bax1 eine Mg2+ abhängige, strukturspezifische Endonuklease ist, die 3‘-Überhang Substrate im Einzelstrangbereich nahe des Einzelstrang/Doppelstrang Überganges schneidet. Konservierte Aminosäuren wurden gezielt verändert, um diejenigen Reste zu identifizieren, die möglicherweise das aktive Zentrum bilden. Im Komplex mit der Helikase XPB veränderte sich jedoch das Schneideverhalten im Hinblick auf die Substratspezifizität. Die Existenz von zwei verschiedenen XPB/Bax1 Komplexen mit unterschiedlicher Aktivität bezüglich des Schnittverhaltens könnte darauf hinweisen, dass XPB Bax1 reguliert. Diese Beobachtung erlaubt zugleich Einblicke in die Interaktion von XPB und Bax1 auf physikalischer und funktioneller Ebene.
|
23 |
Structural Characterization of the TFIIH Subunits p34 and p44 from C. thermophilum / Strukturelle Charakterisierung der TFIIH Untereinheiten p34 und p44 aus C. thermophilumSchmitt, Dominik January 2017 (has links) (PDF)
Several important cellular processes, including transcription, nucleotide excision repair and cell cycle control are mediated by the multifaceted interplay of subunits within the general transcription factor II H (TFIIH).
A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these pathways. This becomes especially important in the context of severe diseases like xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that arise from single point mutations in some of the TFIIH subunits.
In an attempt to structurally characterize the TFIIH complex, we harnessed the qualities of the eukaryotic thermophile Chaetomium thermophilum, a remarkable fungus, which has only recently been recognized as a novel model organism. Homologues of TFIIH from C. thermophilum were expressed in E. coli, purified to homogeneity and subsequently utilized for crystallization trials and biochemical studies.
The results of the present work include the first crystal structure of the p34 subunit of TFIIH, comprising the N-terminal domain of the protein. The structure revealed a von Willebrand Factor A (vWA) like fold, which is generally known to be involved in a multitude of protein-protein interactions. Structural comparison allowed to delineate similarities as well as differences to already known vWA domains, providing insight into the role of p34 within TFIIH. These results indicate that p34 assumes the role of a structural scaffold for other TFIIH subunits via its vWA domain, while likely serving additional functions, which are mediated through its
C-terminal zinc binding domain and are so far unknown.
Within TFIIH p34 interacts strongly with the p44 subunit, a positive regulator of the XPD helicase, which is required for regulation of RNA Polymerase II mediated transcription and essential for eukaryotic nucleotide excision repair. Based on the p34 vWA structure putative protein-protein interfaces were analyzed and binding sites for the p34 p44 interaction suggested. Continuous crystallization efforts then led to the first structure of a p34 p44 minimal complex, comprising the N-terminal vWA domain of p34 and the C-terminal C4C4 RING domain of p44. The structure of the p34 p44 minimal complex verified the previous hypothesis regarding the involved binding sites. In addition, careful analysis of the complex interface allowed to identify critical residues, which were subsequently mutated and analyzed with respect to their significance in mediating the p34 p44 interaction, by analytical size exclusion chromatography, electrophoretic mobility shift assays and isothermal titration calorimetry. The structure of the p34 p44 complex also revealed a binding mode of the p44 C4C4 RING domain, which differed from that of other known RING domains in several aspects, supporting the hypothesis that p44 contains a novel variation of this domain. / Zelluläre Prozesse, wie beispielsweise die Transkription, die Nukleotid-Exzisionsreparatur und die Kontrolle des Zellzyklus sind abhängig vom vielschichtigen Zusammenspiel der zehn Protein-Untereinheiten des allgemeinen Transkriptionsfaktors II H (TFIIH). Zur Aufklärung der genauen Funktion dieses Komplexes ist ein besseres Verständnis seiner molekularen Struktur essentiell. Besondere Bedeutung erhält der TFIIH dabei im Hinblick auf verschiedene schwerwiegende Krankheiten, wie z.B. Xeroderma pigmentosum (XP), Cockayne-Syndrom (CS) und Trichothiodystrophie (TTD), die als Folge von einzelnen Punkt-Mutationen in bestimmten Untereinheiten des Komplexes entstehen.
In der vorliegenden Arbeit wurden zur strukturellen Charakterisierung der TFIIH Untereinheiten p34 und p44 die homologen Proteine aus Chaetomium thermophilum verwendet. Hierbei handelt es sich um einen eukaryotischen und thermophilen Pilz, der erst kürzlich als neuer und vielversprechender Modellorganismus an Bedeutung gewann. Die TFIIH Homologe aus C. thermophilum wurden rekombinant exprimiert, gereinigt und anschließend für Kristallisations-Versuche eingesetzt. Darüber hinaus wurden die Proteine mittels verschiedener biochemischer Verfahren analysiert.
Die erzielten Resultate beinhalten unter anderem die erste Kristall-Struktur der p34 Untereinheit des TFIIH und zeigen eine von Willebrand Faktor A (vWA) ähnliche Domäne im N-terminalen Bereich des Proteins. Vergleiche mit bereits bekannten vWA Proteinen liefern Gemeinsamkeiten sowie Unterschiede und erlauben erste Einblicke in die Funktion der p34 Untereinheit innerhalb des TFIIH Komplexes. Die gewonnenen Erkenntnisse legen nahe, dass p34 über seine vWA Domäne anderen TFIIH Untereinheiten als strukturelles Gerüst dient, während die C-terminale Zinkfinger-Domäne des Proteins sehr wahrscheinlich zusätzliche Aufgaben übernimmt, die bisher noch nicht genau bekannt sind.
Innerhalb des TFIIH Komplexes ist p34 eng mit der p44 Untereinheit assoziiert. Letztere ist als positiver Regulator der XPD Helikase bekannt, die im Rahmen der RNA Polymerase II vermittelten Transkription und der eukaryotischen Nukleotid-Exzisionsreparatur eine entscheidende Rolle spielt. Basierend auf der erzielten p34ct vWA Struktur wurden verschiedene Interaktions-Flächen zwischen p34 und p44 analysiert und mögliche Bindestellen für die beiden Proteine ermittelt. Weitere Kristallisations-Experimente ermöglichten schließlich die Aufklärung der Struktur eines p34 p44 Minimal-Komplexes, bestehend aus der N-terminalen vWA Domäne von p34 und der C-terminalen C4C4 RING Domäne von p44. Die gewonnenen Struktur-Daten bestätigten die zuvor ermittelte Bindestelle der beiden Proteine. Eine genauere Untersuchung der Kontakt-Fläche zwischen p34 und p44 lieferte darüber hinaus entscheidende Hinweise auf besonders wichtige Interaktions-Bereiche und Aminosäuren, die im Folgenden mutiert wurden, um deren Bedeutung für die Komplexbildung zu ermitteln. Mit Hilfe der analytischen Größenausschluss-Chromatographie, elektro-phoretischer Mobilitäts-Verlagerungs-Assays und isothermaler Titrations-Kalorimetrie konnten hierbei verschiedene Aminosäuren identifiziert werden, die für eine stabile p34 p44 Interaktion erforderlich sind. Ferner zeigte die Struktur des p34 p44 Minimal-Komplexes eine Bindungsweise der p44 C4C4 RING Domäne, die sich von der anderer, bereits bekannter RING Domänen in verschiedenen Punkten unterschied. Diese Erkenntnis bestätigt die zuvor aufgestellte Hypothese, dass es sich im Falle von p44 um eine neue Variante der bereits gut charakterisierten RING Domäne handelt.
|
24 |
The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair / Das komplexe Netzwerk der replikationsabhängigen Reparatur von DNA-QuervernetzungenRohleder, Florian January 2014 (has links) (PDF)
The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D’Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive.
To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 Å. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most
importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure.
This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA).
Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, Würzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells
further experiments and optimization procedures are required and ongoing. / Der Fanconi Anämie (FA) Signalweg ist ein replikationsabhängiger DNA-Reparaturmechanismus, der grundlegend zur Beseitigung von DNA-Schäden in Form von intermolekularen Quervernetzungen (ICL) beiträgt (Moldovan and D’Andrea, 2009). Fehlfunktionen in diesem stringent regulierten Reparaturnetzwerk führen somit zu Genominstabilität (Deans and West, 2011). Der pathologische
Phänotyp der Krankheit FA, die durch Mutationen in dem gleichnamigen DNA-Reparatur Signalweg verursacht wird, ist sehr heterogen und umfasst angeborene Deformationen, Knochenmarksversagen, eine erhöhte Tumor Disposition sowie Infertilität (Auerbach, 2009). Der FA Mechanismus ist ein komplexes Netzwerk und bisher wurden 16 FA Komplementationsgruppen sowie weitere beteiligte Faktoren identifiziert (Kottemann and Smogorzewska, 2013). Zusätzlich sind Komponenten der Nukleotid-Exzisionsreparatur (NER), der homologen Rekombinationsreparatur (HRR) und Transläsionssynthese (TLS) involviert, die durch FA Proteine koordiniert werden (Niedzwiedz et al., 2004; Knipscheer et al., 2009). Eines der FA Proteine ist die DEAH Helikase FANCM. Im Komplex mit seinen Interaktionspartnern FAAP24 und MHF1/2 bindet FANCM an die durch den ICL Schaden zum Stillstand gekommene Replikationsgabel und aktiviert die FA Schadensantwort (Wang et al., 2013). Die weiteren Schritte, die zur Entfernung des ICL Schadens führen, sind jedoch weitestgehend ungeklärt.
Zur Aufklärung der Initiation des FA Mechanismus und der Rolle, die das FANCM dabei spielt, wurde in dieser Arbeit hauptsächlich das archaische FANCM Homolog Helicase-associated Endonuclease for Fork-structured DNA (Hef) analysiert. Hef aus dem archaischen Organismus Thermoplasma acidophilum (taHef) unterscheidet sich von anderen archaischen Hef Proteinen und besteht ausschließlich aus einem N-terminalen Helikase-Abschnitt mit zwei RecA und einer thumb-like Domäne, während andere Hef Proteine am C-Terminus zusätzlich eine Nuklease-Domäne besitzen. Ich habe die Kristallstruktur des taHef Proteins bei einer Auflösung von 2,43 Å gelöst. Im Gegensatz zur Kristallstruktur eines vergleichbaren Hef-Konstruktes aus Pyrococcus
furiosus (pfHef) (Nishino et al., 2005b) liegt in taHef eine extrem offene Konformation der beiden RecA-Domänen vor, was impliziert, dass eine Bewegung der RecA-ähnlichen Helikase Motordomänen um 61° möglich ist und zudem die zur Translokation entlang der DNA notwendige Flexibilität von Helikasen verdeutlicht. Messungen mittels Kleinwinkelröntgenstreuung (SAXS) deuten hingegen auf eine intermediäre Konformation des taHef Proteins in Lösung hin, wodurch beide Kristallstrukturen als eher Randzustände angesehen werden können. Besonders hervorzuheben ist, dass das Protein Proliferating Cell Nuclear Antigen (PCNA) als Hef Interaktionspartner identifiziert wurde. Diese Interaktion wird durch ein hoch-konserviertes kanonisches PCNA Interaktionspeptid-Motiv vermittelt. Interessanterweise beeinflusst PCNA aber weder die ATPase noch die Helikase Aktivität von taHef, was darauf hindeutet, dass diese Interaktion nur zur Rekrutierung des Hef Proteins zur Replikationsgabel dient. Wegen des hohen Maßes an Flexibilität konnte der taHef-taPCNA Komplex nicht kristallisiert werden, wohingegen SAXS Messungen erfolgreich waren und ein Model bei niedriger Auflösung konnte erhalten werden.
Diese nachgewiesene Interaktion zwischen Hef und PCNA konnte auch für das eukaryotische FANCM Homolog Mph1 aus dem thermophilen Pilz Chaetomium thermophilum (ctMph1) bestätigt werden. Als ersten Schritt zur Charakterisierung dieser Interaktion habe ich die Kristallstruktur von PCNA aus Chaetomium thermophilum (ctPCNA) gelöst.
Weiterhin war es möglich, vorläufige Resultate bezüglich der mutmaßlichen Interaktion zwischen den humanen Proteinen FANCM und PCNA (hsFANCM,
hsPCNA) zu erhalten. In Kooperation mit Detlev Schindler (Humangenetik, Würzburg) und Weidong Wang (National Institute on Aging, Baltimore, USA) wurden Co-Immunopräzipitations-Experimente (CoIP) mit humanem FANCM und humanem PCNA aus HEK293-Zellen durchgeführt. Obwohl eine Interaktion in Hydroxyurea-stimulierten Zellen reproduzierbar nachgewiesen werden konnte, sind
weitere Experimente notwendig, um diese Interaktion zu charakterisieren.
|
25 |
Neue Fanconi-Anämie-Gene als Wächter des Genoms / New Fanconi anemia genes as guardians of the genomeKnies, Kerstin January 2018 (has links) (PDF)
Fanconi Anämie (FA) gehört zu den seltenen Chromsomeninstabilitäts-Syndromen. Ursächlich für die Erkrankung sind biallelische Mutationen mit autosomal rezessiver Vererbung in einem der bisher bekannten 21 Genen (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U und –V). Eine Ausnahme stellen FANCB und FANCS dar, die X-chromosomal rezessiv bzw. mit einem dominant negativen Effekt vererbt werden. Die Genprodukte sind als Teil des FA/BRCA-DNA-Reparatur Netzwerks bei der Beseitigung von DNA-Interstrang-Quervernetzungen (ICL) involviert. ICLs führen zu einer Stagnation der Replikationsgabel und blockieren somit wichtige zelluläre Prozesse wie Replikation und Transkription, sodass eine Aufrechterhaltung der Genomstabilität nicht mehr gewährleistet ist.
FA ist gekennzeichnet durch angeborene Fehlbildungen, fortschreitendes Knochenmarkversagen und eine erhöhte Prädisposition gegenüber Krebserkrankungen. Die Diagnose basiert auf phänotypischen Auffälligkeiten und wird auf zellulärer Ebene durch die Hypersensititvät gegenüber DNA-quervernetzenden Substanzen wie Mitomycin C (MMC) bestätigt. Da nicht jeder Patient einer bisher bekannten Komplementationsgruppe zugeordnet werden kann und herkömmliche molekulare Diagnostikverfahren mit der steigenden Anzahl an FA-Genen mühsam, zeitaufwändig und teuer geworden sind, war es nötig, neue molekulare Verfahren wie Whole Exome Sequencing (WES) zu etablieren. Im Rahmen dieser Arbeit wurde das Potential dieser Methode im Bezug auf die FA-Genotypisierung erforscht. Bei der Suche nach einer optimalen Anwendung des WES, untersuchten wir verschiedene Anreicherungs- und Sequenziertechniken. Dennoch führen Fehler in den Datenbanken sowie Pseudogene zu falschen Dateninterpretationen und –darstellungen und stellen somit eine Herausforderung dar. Trotzdem zeigen unserer Daten, dass WES eine wertvolle Methode in der Molekulardiagnostik von FA ist. Dies bestätigte sich durch die Zuordnung mehrerer, vorher unklassifizierter FA-Patienten zu den bekannten Komplementationsgruppen und der Ergänzung eines siebten Patienten zum Subtyp FA-P, im Rahmen von zwei Next Generation Sequencing (NGS) Publikationen.
Außerdem wurden mit Hilfe von WES zwei neue FA-Gene (FANCQ und FANCW) im Rahmen dieser Arbeit gefunden, wobei XPF (FANCQ) das erste Gen überhaupt war, welches anhand von NGS detektiert wurde. ERCC4/XPF ist eine strukturspezifische Endonuklease, die durch ein Gen kodiert wird, welches bereits vorher mit den Krankheiten Xeroderma Pigmentosum (XP) und dem segmentalen XFE progeroid Syndrom in Verbindung gebracht wurde. Unsere Daten zeigen, dass abhängig von der Mutation in XPF, Patienten eine der drei unterschiedlichen Funktionsstörungen aufweisen. Dies hebt die multifunktionale Stellung der XPF Endonuklease im Rahmen der Genomstabilität und von humanen Erkrankungen hervor. Das zweite Gen, das während dieser Arbeit entdeckt wurde, ist die WD40-Domäne tragende E3 Ubiquitin Ligase RFWD3, die kürzlich mit DNA Reparatur und insbesondere HR verknüpft wurde. Wir konnten zeigen, dass eine RFWD3 Mutation in der WD40-Domäne bei einem FA-Patienten mit der genetischen Erkrankung Fanconi Anämie assoziiert ist. Die HR ist in RFWD3 (FANCW) mutierten Zellen gestört, was auf einer verminderten Relokalisation von mutiertem RFWD3 an das Chromatin und einer defekten Interaktion mit RPA beruht. Des Weiteren weisen Rfwd3 defiziente Mäuse typische Merkmale anderer FA-Mausmodelle auf, wie verminderte Fertilität, ovarielle und testikuläre Atrophie sowie eine reduzierte Lebenserwartung.
Insgesamt zeigt diese Arbeit, dass neue molekulare Ansätze wie NGS ein wertvolles Hilfsmittel in der FA-Diagnostik sind um bisher unklassifizierte Patienten einer Komplementationsgruppe zuordnen zu können. Zudem konnten mit Hilfe dieser Technik zwei neue Gene identifiziert werden. Deren Charakterisierung trägt zu einer Vervollständigung und weiteren Aufklärung des FA/BRCA-DNA-Reparatur-Netzwerks bei. / Fanconi anemia (FA) is a rare genomic instability syndrome. Biallelic mutations are disease causing in any one of at least 21 genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U and -V). All are inherited in an autosomal recessive way, except FANCB and FANCS, which are inherited in a X-chromosomal recessive and a dominant negative way, respectively. The gene products are involved in the FA/BRCA DNA damage response pathway to remove interstrand-crosslinks (ICL). ICLs cause stalled replication forks and hence block crucial cellular processes like replication and transcription resulting in decreased maintenance of genome stability.
FA is characterized by congenital malformations, progressive bone marrow failure (BMF), and susceptibility to malignancies. Patients are diagnosed based upon phenotypical manifestations and the diagnosis of FA is confirmed by the hypersensitivity of cells to DNA interstrand crosslinking agents such as Mitomycin C (MMC). Since not every patient can be assigned to a complementation group and customary molecular diagnostics has become increasingly cumbersome, time-consuming and expensive the more FA genes have been identified new molecular approaches like Whole Exome Sequencing (WES) has been established. The potential of this method for FA genotyping has been investigated in the context of this thesis. By exploring different enrichment and sequencing techniques, we were able to identify the pathogenic mutations in each case using WES. However, database errors and pseudogenes pose challenges to interpret data correctly. Nevertheless our results show that WES is a valuable tool for molecular diagnosis of FA, since we were able to assign several previously unclassified FA patients to known complementation groups in the framework of two Next Generation Sequencing (NGS) studies.
In addition WES revealed two new FA-genes, XPF and RFWD3. Extraordinarily, XPF (FANCQ) is the first gene to be detected with NGS. ERCC4/XPF is a structure specific nuclease - encoding a gene previously connected to xeroderma pigmentosum (XP) and segmental XFE progeroid syndrome. Depending on the type of ERCC4 mutation individuals present with one of the three clinically distinct disorders highlighting the multifunctional nature of the XPF endonuclease in genome stability and human disease. The second gene identified within this thesis is the WD40-containing E3 ubiquitin ligase RFWD3, which has been recently linked to the repair of DNA damage by Homologous Recombination (HR). Here, we show that an RFWD3 mutation within the WD40 domain of a patient with typical FA malformations is connected to the genetic disease Fanconi anemia (FA). Disordered HR is the result of depleted relocation of mutant RFWD3 to chromatin and defective physical interaction with RPA. In addition, Rfwd3 knockout mice show ovarian and testicular atrophy, a reduced life span and pups with sub-Mendelian birth ratios indicating embryonal-lethality. These features resemble other FA mouse models.
In summary, this work showed that new molecular approaches like WES are valuable tools for FA diagnosis. Additionally, this method is a useful medium to assign FA patients to so far unknown complementation groups. Two novel genes have been identified and contribute to further completion of the FA/BRCA DNA repair network in the context of genome stability.
|
26 |
The investigation of the function of repair proteins at G-quadruplex structures in \(Saccharomyces\) \(cerevisiae\) revealed that Mms1 promotes genome stability / Die Untersuchung der Funktion von Reparaturproteinen an G-Quadruplex Strukturen in \(Saccharomyces\) \(cerevisiae\) zeigte, dass Mms1 Genomstabilität fördertWanzek, Katharina January 2016 (has links) (PDF)
G-quadruplex structures are highly stable alternative DNA structures that can, when not properly regulated, impede replication fork progression and cause genome instability (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu & Spies, 2016; Zimmer et al, 2016). The aim of this thesis was to identify novel G-quadruplex interacting proteins in Saccharomyces cerevisiae and to unravel their regulatory function at these structures to maintain genome integrity. Mms1 and Rtt101 were identified as G-quadruplex binding proteins in vitro via a pull-down experiment with subsequent mass spectrometry analysis. Rtt101, Mms1 and Mms22, which are all components of an ubiquitin ligase (Rtt101Mms1/Mms22), are important for the progression of the replication fork following fork stalling (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). The in vivo binding of endogenously tagged Mms1 to its target regions was analyzed genome-wide using chromatin-immunoprecipitation followed by deep-sequencing. Interestingly, Mms1 bound independently of Mms22 and Rtt101 to G-rich regions that have the potential to form G-quadruplex structures. In vitro, formation of G-quadruplex structures could be shown for the G-rich regions Mms1 bound to. This binding was observed throughout the cell cycle. Furthermore, the deletion of MMS1 caused replication fork stalling as evidenced by increased association of DNA Polymerase 2 at Mms1 dependent sites. A gross chromosomal rearrangement assay revealed that deletion of MMS1 results in a significantly increased genome instability at G-quadruplex motifs compared to G-rich or non-G-rich regions. Additionally, binding of the helicase Pif1, which unwinds G4 structures in vitro (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), to Mms1 binding sites was reduced in mms1 cells. The data presented in this thesis, together with published data, suggests a novel mechanistic model in which Mms1 binds to G-quadruplex structures and enables Pif1 association. This allows for replication fork progression and genome integrity. / Bei G-quadruplex Strukturen handelt es sich um stabile Sekundärstrukturen der DNA, welche das Fortschreiten der Replikationsgabel behindern und Genominstabilität verursachen können, falls sie nicht konsequent reguliert werden (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu & Spies, 2016; Zimmer et al, 2016). Ziel dieser Doktorarbeit war es, neue Proteininteraktionspartner dieser Strukturen in Saccharomyces cerevisiae zu identifizieren und zu untersuchen, wie diese Proteine die Strukturen regulieren um Genomstabilität zu gewährleisten. Mit Hilfe eines Pulldown Assays und anschließender massenspektrometrischer Analyse wurden Mms1 und Rtt101 in vitro als Interaktionspartner von G-quadruplex Strukturen identifiziert. Rtt101, Mms1 und Mms22, Komponenten der Ubiquitinligase Rtt101Mms1/Mms22, spielen eine wichtige Rolle beim Fortschreiten der Replikationsgabel, falls dieses durch Agenzien gehemmt wurde (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). Durch Chromatin-Immunpräzipitation mit anschließender Hochdurchsatzsequenzierung wurden die Bindestellen von Mms1 identifiziert. Interessanterweise hat Mms1 genomweit an G-reiche Sequenzen gebunden. Diese G-reichen Sequenzen bildeten G-quadruplex Strukturen in vitro aus. Die Bindung von Mms1 erfolgte unabhängig von Rtt101 und Mms22 sowie während des gesamten Zellzyklus. Außerdem kam es zu einer Verlangsamung der Replikationsgabel in mms1 Zellen, was durch eine verstärkte Bindung der DNA Polymerase 2 nachgewiesen wurde. Ein gross chromsomal rearrangement assay zeigte, dass die Genominstabilität in mms1 Zellen signifikant erhöht ist, wenn G-quadruplex Motive, im Vergleich zu nicht-G-reichen oder G-reichen Kontrollregionen, vorhanden sind. Zudem war die Bindung der Helikase Pif1, welche G-quadruplex Strukturen in vitro entwindet (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), stark reduziert, wenn Mms1 fehlte. Mit Hilfe der in dieser Doktorarbeit gewonnenen Ergebnisse, sowie mit Hilfe publizierter Daten, lässt sich ein Model postulieren, in welchem Mms1 an G-quadruplexe bindet und somit die Bindung von Pif1 ermöglicht. Dadurch werden das Fortschreiten der Replikationsgabel und die Genomstabilität gewährleistet.
|
27 |
Einfluss von Arsenverbindungen auf die Funktion der DNA-Reparaturproteine Fpg, XPA und PARP-1Walter, Ingo January 2007 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2007
|
28 |
Interaction of Poly(ADP-ribose) and Specific Binding Proteins as a Function of Chain LengthFahrer, Jörg. January 2007 (has links)
Konstanz, Univ., Diss., 2007.
|
29 |
Automatisierte Quantifizierung von DNA-Schädigung und DNA-Reparatur und deren Anwendung in der genetischen Toxikologie und AlternsforschungMoreno-Villanueva, María. January 2008 (has links)
Konstanz, Univ., Diss., 2008.
|
30 |
Zur Rolle von p53 und zum Einfluss von Cadmiumchlorid auf DNA-Reparaturprozesse und ZellzykluskontrolleJahnke, Gunnar January 2007 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2007
|
Page generated in 0.0598 seconds