• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 6
  • 3
  • 1
  • Tagged with
  • 124
  • 124
  • 52
  • 48
  • 41
  • 36
  • 35
  • 35
  • 34
  • 30
  • 30
  • 27
  • 27
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Task driven representation learning / Apprentissage de représentation dirigée par la tâche

Wauquier, Pauline 29 May 2017 (has links)
De nombreux algorithmes d'Apprentissage automatique ont été proposés afin de résoudre les différentes tâches pouvant être extraites des problèmes de prédiction issus d'un contexte réel. Pour résoudre les différentes tâches pouvant être extraites, la plupart des algorithmes d'Apprentissage automatique se basent d'une manière ou d'une autre sur des relations liant les instances. Les relations entre paires d'instances peuvent être définies en calculant une distance entre les représentations vectorielles des instances. En se basant sur la représentation vectorielle des données, aucune des distances parmi celles communément utilisées n'est assurée d'être représentative de la tâche à résoudre. Dans ce document, nous étudions l'intérêt d'adapter la représentation vectorielle des données à la distance utilisée pour une meilleure résolution de la tâche. Nous nous concentrons plus précisément sur l'algorithme existant résolvant une tâche de classification en se basant sur un graphe. Nous décrivons d'abord un algorithme apprenant une projection des données dans un espace de représentation permettant une résolution, basée sur un graphe, optimale de la classification. En projetant les données dans un espace de représentation dans lequel une distance préalablement définie est représentative de la tâche, nous pouvons surpasser la représentation vectorielle des données lors de la résolution de la tâche. Une analyse théorique de l'algorithme décrit est développée afin de définir les conditions assurant une classification optimale. Un ensemble d'expériences nous permet finalement d'évaluer l'intérêt de l'approche introduite et de nuancer l'analyse théorique. / Machine learning proposes numerous algorithms to solve the different tasks that can be extracted from real world prediction problems. To solve the different concerned tasks, most Machine learning algorithms somehow rely on relationships between instances. Pairwise instances relationships can be obtained by computing a distance between the vectorial representations of the instances. Considering the available vectorial representation of the data, none of the commonly used distances is ensured to be representative of the task that aims at being solved. In this work, we investigate the gain of tuning the vectorial representation of the data to the distance to more optimally solve the task. We more particularly focus on an existing graph-based algorithm for classification task. An algorithm to learn a mapping of the data in a representation space which allows an optimal graph-based classification is first introduced. By projecting the data in a representation space in which the predefined distance is representative of the task, we aim at outperforming the initial vectorial representation of the data when solving the task. A theoretical analysis of the introduced algorithm is performed to define the conditions ensuring an optimal classification. A set of empirical experiments allows us to evaluate the gain of the introduced approach and to temper the theoretical analysis.
22

Knowledge Graph Representation Learning: Approaches and Applications in Biomedicine

AlShahrani, Mona 13 November 2019 (has links)
Bio-ontologies and Linked Data have become integral part of biological and biomedical knowledge bases with over 500 of them and millions of triples. Such knowledge bases are primarily developed for information retrieval, query processing, data integration, standardization, and provision. Developing machine learning methods which can exploit the background knowledge in such resources for predictive analysis and novel discovery in the biomedical domain has become essential. In this dissertation, we present novel approaches which utilize the plethora of data sets made available as bio-ontologies and Linked Data in a single uni ed framework as knowledge graphs. We utilize representation learning with knowledge graphs and introduce generic models for addressing and tackling computational problems of major implications to human health, such as predicting disease-gene associations and drug repurposing. We also show that our methods can compensate for incomplete information in public databases and can smoothly facilitate integration with biomedical literature for similar prediction tasks. Furthermore, we demonstrate that our methods can learn and extract features that outperform relevant methods, which rely on manually crafted features and laborious features engineering and pre-processing. Finally, we present a systematic evaluation of knowledge graph representation learning methods and demonstrate their potential applications for data analytics in biomedicine.
23

Modeling Time Series and Sequences: Learning Representations and Making Predictions

Lian, Wenzhao January 2015 (has links)
<p>The analysis of time series and sequences has been challenging in both statistics and machine learning community, because of their properties including high dimensionality, pattern dynamics, and irregular observations. In this thesis, novel methods are proposed to handle the difficulties mentioned above, thus enabling representation learning (dimension reduction and pattern extraction), and prediction making (classification and forecasting). This thesis consists of three main parts. </p><p>The first part analyzes multivariate time series, which is often non-stationary due to high levels of ambient noise and various interferences. We propose a nonlinear dimensionality reduction framework using diffusion maps on a learned statistical manifold, which gives rise to the construction of a low-dimensional representation of the high-dimensional non-stationary time series. We show that diffusion maps, with affinity kernels based on the Kullback-Leibler divergence between the local statistics of samples, allow for efficient approximation of pairwise geodesic distances. To construct the statistical manifold, we estimate time-evolving parametric distributions by designing a family of Bayesian generative models. The proposed framework can be applied to problems in which the time-evolving distributions (of temporally localized data), rather than the samples themselves, are driven by a low-dimensional underlying process. We provide efficient parameter estimation and dimensionality reduction methodology and apply it to two applications: music analysis and epileptic-seizure prediction.</p><p> </p><p>The second part focuses on a time series classification task, where we want to leverage the temporal dynamic information in the classifier design. In many time series classification problems including fraud detection, a low false alarm rate is required; meanwhile, we enhance the positive detection rate. Therefore, we directly optimize the partial area under the curve (PAUC), which maximizes the accuracy in low false alarm rate regions. Latent variables are introduced to incorporate the temporal information, while maintaining a max-margin based method solvable. An optimization routine is proposed with its properties analyzed; the algorithm is designed as scalable to web-scale data. Simulation results demonstrate the effectiveness of optimizing the performance in the low false alarm rate regions. </p><p> </p><p>The third part focuses on pattern extraction from correlated point process data, which consist of multiple correlated sequences observed at irregular times. The analysis of correlated point process data has wide applications, ranging from biomedical research to network analysis. We model such data as generated by a latent collection of continuous-time binary semi-Markov processes, corresponding to external events appearing and disappearing. A continuous-time modeling framework is more appropriate for multichannel point process data than a binning approach requiring time discretization, and we show connections between our model and recent ideas from the discrete-time literature. We describe an efficient MCMC algorithm for posterior inference, and apply our ideas to both synthetic data and a real-world biometrics application.</p> / Dissertation
24

Representation learning in heterogeneous information networks for user modeling and recommendations

Kallumadi, Surya January 1900 (has links)
Doctor of Philosophy / Department of Computer Science / William H. Hsu / Current research in the field of recommender systems takes into consideration the interaction between users and items; we call this the homogeneous setting. In most real world systems, however these interactions are heterogeneous, i.e., apart from users and items there are other types of entities present within the system, and the interaction between the users and items occurs in multiple contexts and scenarios. The presence of multiple types of entities within a heterogeneous information network, opens up new interaction modalities for generating recommendations to the users. The key contribution of the proposed dissertation is representation learning in heterogeneous information networks for the recommendations task. Query-based information retrieval is one of the primary ways in which meaningful nuggets of information is retrieved from large amounts of data. Here the query is represented as a user's information need. In a homogeneous setting, in the absence of type and contextual side information, the retrieval context for a user boils down to the user's preferences over observed items. In a heterogeneous setting, information regarding entity types and preference context is available. Thus query-based contextual recommendations are possible in a heterogeneous network. The contextual query could be type-based (e.g., directors, actors, movies, books etc.) or value-based (e.g., based on tag values, genre values such as ``Comedy", ``Romance") or a combination of Types and Values. Exemplar-based information retrieval is another technique for of filtering information, where the objective is to retrieve similar entities based on a set of examples. This dissertation proposes approaches for recommendation tasks in heterogeneous networks, based on these retrieval mechanisms present in traditional information retrieval domain.
25

Deep Learning on Graph-structured Data

Lee, John Boaz T. 11 November 2019 (has links)
In recent years, deep learning has made a significant impact in various fields – helping to push the state-of-the-art forward in many application domains. Convolutional Neural Networks (CNN) have been applied successfully to tasks such as visual object detection, image super-resolution, and video action recognition while Long Short-term Memory (LSTM) and Transformer networks have been used to solve a variety of challenging tasks in natural language processing. However, these popular deep learning architectures (i.e., CNNs, LSTMs, and Transformers) can only handle data that can be represented as grids or sequences. Due to this limitation, many existing deep learning approaches do not generalize to problem domains where the data is represented as graphs – social networks in social network analysis or molecular graphs in chemoinformatics, for instance. The goal of this thesis is to help bridge the gap by studying deep learning solutions that can handle graph data naturally. In particular, we explore deep learning-based approaches in the following areas. 1. Graph Attention. In the real-world, graphs can be both large – with many complex patterns – and noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to use an attention-based deep learning model. An attention mechanism allows the model to focus on task-relevant parts of the graph which helps the model make better decisions. We introduce a model for graph classification which uses an attention-guided walk to bias exploration towards more task-relevant parts of the graph. For the task of node classification, we study a different model – one with an attention mechanism which allows each node to select the most task-relevant neighborhood to integrate information from. 2. Graph Representation Learning. Graph representation learning seeks to learn a mapping that embeds nodes, and even entire graphs, as points in a low-dimensional continuous space. The function is optimized such that the geometric distance between objects in the embedding space reflect some sort of similarity based on the structure of the original graph(s). We study the problem of learning time-respecting embeddings for nodes in a dynamic network. 3. Brain Network Discovery. One of the fundamental tasks in functional brain analysis is the task of brain network discovery. The brain is a complex structure which is made up of various brain regions, many of which interact with each other. The objective of brain network discovery is two-fold. First, we wish to partition voxels – from a functional Magnetic Resonance Imaging scan – into functionally and spatially cohesive regions (i.e., nodes). Second, we want to identify the relationships (i.e., edges) between the discovered regions. We introduce a deep learning model which learns to construct a group-cohesive partition of voxels from the scans of multiple individuals in the same group. We then introduce a second model which can recover a hierarchical set of brain regions, allowing us to examine the functional organization of the brain at different levels of granularity. Finally, we propose a model for the problem of unified and group-contrasting edge discovery which aims to discover discriminative brain networks that can help us to better distinguish between samples from different classes.
26

Modeling Knowledge and Functional Intent for Context-Aware Pragmatic Analysis

Vedula, Nikhita January 2020 (has links)
No description available.
27

Recommending Collaborations Using Link Prediction

Chennupati, Nikhil 27 May 2021 (has links)
No description available.
28

Human Understandable Interpretation of Deep Neural Networks Decisions Using Generative Models

Alabdallah, Abdallah January 2019 (has links)
Deep Neural Networks have long been considered black box systems, where their interpretability is a concern when applied in safety critical systems. In this work, a novel approach of interpreting the decisions of DNNs is proposed. The approach depends on exploiting generative models and the interpretability of their latent space. Three methods for ranking features are explored, two of which depend on sensitivity analysis, and the third one depends on Random Forest model. The Random Forest model was the most successful to rank the features, given its accuracy and inherent interpretability.
29

Deep Learning on Graph-structured Data

Lee, John Boaz T 11 November 2019 (has links)
In recent years, deep learning has made a significant impact in various fields – helping to push the state-of-the-art forward in many application domains. Convolutional Neural Networks (CNN) have been applied successfully to tasks such as visual object detection, image super-resolution, and video action recognition while Long Short-term Memory (LSTM) and Transformer networks have been used to solve a variety of challenging tasks in natural language processing. However, these popular deep learning architectures (i.e., CNNs, LSTMs, and Transformers) can only handle data that can be represented as grids or sequences. Due to this limitation, many existing deep learning approaches do not generalize to problem domains where the data is represented as graphs – social networks in social network analysis or molecular graphs in chemoinformatics, for instance. The goal of this thesis is to help bridge the gap by studying deep learning solutions that can handle graph data naturally. In particular, we explore deep learning-based approaches in the following areas. 1. Graph Attention. In the real-world, graphs can be both large – with many complex patterns – and noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to use an attention-based deep learning model. An attention mechanism allows the model to focus on task-relevant parts of the graph which helps the model make better decisions. We introduce a model for graph classification which uses an attention-guided walk to bias exploration towards more task-relevant parts of the graph. For the task of node classification, we study a different model – one with an attention mechanism which allows each node to select the most task-relevant neighborhood to integrate information from. 2. Graph Representation Learning. Graph representation learning seeks to learn a mapping that embeds nodes, and even entire graphs, as points in a low-dimensional continuous space. The function is optimized such that the geometric distance between objects in the embedding space reflect some sort of similarity based on the structure of the original graph(s). We study the problem of learning time-respecting embeddings for nodes in a dynamic network. 3. Brain Network Discovery. One of the fundamental tasks in functional brain analysis is the task of brain network discovery. The brain is a complex structure which is made up of various brain regions, many of which interact with each other. The objective of brain network discovery is two-fold. First, we wish to partition voxels – from a functional Magnetic Resonance Imaging scan – into functionally and spatially cohesive regions (i.e., nodes). Second, we want to identify the relationships (i.e., edges) between the discovered regions. We introduce a deep learning model which learns to construct a group-cohesive partition of voxels from the scans of multiple individuals in the same group. We then introduce a second model which can recover a hierarchical set of brain regions, allowing us to examine the functional organization of the brain at different levels of granularity. Finally, we propose a model for the problem of unified and group-contrasting edge discovery which aims to discover discriminative brain networks that can help us to better distinguish between samples from different classes.
30

Structural Comparison of Data Representations Obtained from Deep Learning Models / Strukturell Jämförelse av Datarepresentationer från Djupinlärningsmodeller

Wallin, Tommy January 2022 (has links)
In representation learning we are interested in how data is represented by different models. Representations from different models are often compared by training a new model on a downstream task using the representations and testing their performance. However, this method is not always applicable and it gives limited insight into the representations. In this thesis, we compare natural image representations from classification models and the generative model BigGAN using two other approaches. The first approach compares the geometric clustering of the representations and the second approach compares if the pairwise similarity between images is similar between different models. All models are large pre-trained models trained on ImageNet and the representations are taken as middle layers of the neural networks. A variety of experiments are performed using these approaches. One of the main results of this thesis shows that the representations of different classes are geometrically separated in all models. The experiments also show that there is no significant geometric difference between representations from training data and representations from validation data. Additionally, it was found that the similarity of representations between different models was approximately the same between the classification models AlexNet and ResNet as well as between the classification models and the BigGAN generator. They were also approximately equally similar to each other as they were to the class embedding of the BigGAN generator. Along with the experiment results, this thesis also provide several suggestions for future work in representation learning since a large number of research questions were explored. / Detta verk studerar representationer från artificiella neuronnät. Representationerna tas som värdena på ett lager i mittendelen av neuronnätet. Eftersom dessa representationer har flera olika användningsområden är syftet att jämföra dem från olika modeller. Ofta jämförs representationer genom att testa hur bra de är som input till en ny modell med ett nytt mål; alltså hur bra representationerna är att använda inom “transfer learning”. Denna metod ger begränsad information om representationerna och är inte alltid applicerbar. Detta verk använder därför två andra tillvägagångssätt för att jämföra representationer. Den första är att jämföra geometriska grupperingar hos olika representationer. Den andra använder ett mått av hur lika olika representationer är. Flera olika experiment utförs med hjälp av dessa tillvägagångssätt. Representationerna kommer frånmodeller som redan tränats på ImageNet. Både klassifikationsmodeller och en generativa modell används med syfte att också jämföra dem med varandra. Det första huvudresultatet från experimenten är att det finns en tydlig geometrisk separation av representationer från olika klasser i modellerna. Experimenten visar också att det inte fanns en tydlig geometrisk separation av representationer från träningsdata och valideringsdata. Ett annat resultat är att representationerna från de olika klassifikationsmodellerna AlexNet och ResNet är ungefär lika lika varandra som mellan klassifikationsmodellerna och generatorn hos den generativa modellen BigGAN. Resultaten visar också att de har en liknande likhet till BigGANs “class embedding”. Fler forskningsfrågor undersöks i andra experiment. Utöver experimenten kommer detta verk med många idéer till framtida forskning.

Page generated in 1.0756 seconds