31 |
Relationship Between Recharge, Redox Conditions, and Microbial Methane Generation in Coal BedsRitter, Daniel James January 2015 (has links)
Natural gas is an important transitional energy source to replace more carbon intensive coal combustion in the face of climate change and increasing global energy demands. A significant proportion of natural gas reserves (~20%) were recently generated by microorganisms that degrade organic-rich formations (i.e. coal, shale, oil) in-situ to produce methane. Recent studies have shown that these microbial communities may be potentially stimulated to generate more methane to extend the lifetime (~10 years) of existing biogenic gas wells. This dissertation investigates how microbial coalbed methane (CBM) systems are impacted by geochemical conditions, microbial community composition, and groundwater recharge. The first study is a review and synthesis of existing basic research and commercial activities on enhancement of microbial CBM generation, and identification of key knowledge gaps that need to be addressed to advance stimulation efforts. The second study couples water and gas geochemistry with characterization of microbial communities in coalbeds in the Powder River Basin (PRB), Wyoming to investigate the influence of microbiology on water and gas geochemistry. Geochemistry results indicated that nutrients are likely source in situ from coal, and that all sulfate must be removed from the system before methanogenesis will commence. Increased archaeal (i.e. methanogens) diversity was observed with decreasing sulfate concentration, while sulfate reducing bacterial communities were different in wells with high sulfate concentrations (sulfate reducing conditions) when compared to wells with low sulfate concentrations (methanogenic conditions). The third study uses noble gases to constrain the residence time of groundwater associated with CBM in the PRB. Measured diffusional release rates of 4He from PRB coals were ~800 times greater than typical rates observed in sandstone or carbonate aquifers, and measured 4He values far exceeded expected values from in-situ decay of U and Th. Groundwater 4He residence times ranged from <1 to ~800 years using the measured diffusion rates versus ~130 to 190,000 years using a standard model. Coal waters with the longest residence time had the highest alkalinity concentrations, suggesting greater extents of microbial methanogenesis, although there was no relationship between groundwater "age" and methane concentrations or isotopic indicators of methanogenesis. Constraining the relationship between microbial activity (e.g. mechanisms of coal biodegradation and methane generation), environmental geochemical conditions, and groundwater flow is important to better understand subsurface hydrobiogeochemical processes and to ensure the success of future projects related to stimulation of microbial CBM.
|
32 |
Hydraulic Evaluation of a Community Managed Wastewater Stabilization Pond System in BoliviaLizima, Louis 11 February 2013 (has links)
This work explores the hydraulic performance of a wastewater lagoon system located in San Antonio, Bolivia. The system consists of one facultative pond and two maturation ponds in series and is managed through a locally elected water committee. A tracer study was performed on the primary facultative pond and an analysis of the solids accumulation on the bottom of the facultative lagoon was also performed. The results were used to generate residence time distribution curves and provide an estimate of mean residence time in the system. The data was used to examine hydraulic efficiency as it relates to short-circuiting and dead zones. A sludge study accumulation study was performed using the white towel method and the resulting measurements were interpolated to determine a total estimated sludge volume of 169 m3 (which is 8% of the facultative pond volume). An orange study was also performed to assess the surface flow pattern in the system. The results were compared with a computational 2-d model. The 2-d model incorporated the estimated sludge distribution and provided a good fit for the tracer dye concentrations measured in the field over the 12 day study period. Simple models such as the Tanks in Series and the Completely mixed model were evaluated and abandoned because of their inability to model the physical behavior in the system. The Completely mixed model did however perform better than the Plug flow model. After comparing the tracer results from the reactor models that were considered: Tanks in Series, Completely mixed fluid, manual interpolation and the results from the 2-d cfd flow simulation, the results that provided the best fit for the data over 12 days was the manual interpolation method at a flow rate of 98 m3/day and configuration D at 60 m3/day. However, because of uncertainty as to what depth to obtain a representative area for the 2-d simplification and sensitivity to flow; all four configurations were considered for estimating the MHRT at the lowest measured flow rate of 60 m3/day. The results at a flow rate of 60 m3/day varied between 10.88 and 13.04 days for the MHRT with a hydraulic efficiency that varied between 33-51.6% (accounting for sludge volume). This is much shorter than the actual nominal retention time of 37 days and the design nominal retention time of 26 days. As a result it was concluded that short-circuiting was occurring in the facultative lagoon.
|
33 |
Investigation of non-Newtonian flow in anaerobic digestersLangner, Jeremy M. 12 January 2010 (has links)
This thesis examines how the non-Newtonian characteristics of liquid hog manure affect the flow conditions within a steady-flow anaerobic digester. There are three main parts to this thesis. In the first part of this thesis, the physical properties of liquid hog manure and their variation with temperature and solids concentration are experimentally determined. Naturally¬¬-settled manure sampled from an outdoor storage lagoon is studied, and density, viscosity, and particle size distribution are measured. Hog manure with total solids concentrations of less than 3.6% exhibits Newtonian behaviour; manure between 3.6% and 6.5% total solids is pseudoplastic, and fits the power law; manure with more than 6.5% total solids exhibits non-Newtonian and time-dependent characteristics. The second part of this thesis investigates the flow of Newtonian and non-Newtonian fluids—represented by tap water and xanthan gum solution, respectively—within four lab-scale reactor geometries, using residence time distribution (RTD) experiments. The effect of reactor geometry, flow rate, and fluid viscosity are evaluated. In the third part of this thesis, flow conditions within lab-scale and pilot-scale anaerobic digester reactors are simulated using three-dimensional modeling techniques. The RTDs of lab-scale reactors as predicted by the 3D numerical models compare well to the experimental results. The 3D models are also validated using data from particle image velocimetry (PIV) experiments. Finally, the viscous properties of liquid hog manure at 3% and 8% total solids are incorporated into the models, and the results are evaluated.
|
34 |
Investigation of non-Newtonian flow in anaerobic digestersLangner, Jeremy M. 12 January 2010 (has links)
This thesis examines how the non-Newtonian characteristics of liquid hog manure affect the flow conditions within a steady-flow anaerobic digester. There are three main parts to this thesis. In the first part of this thesis, the physical properties of liquid hog manure and their variation with temperature and solids concentration are experimentally determined. Naturally¬¬-settled manure sampled from an outdoor storage lagoon is studied, and density, viscosity, and particle size distribution are measured. Hog manure with total solids concentrations of less than 3.6% exhibits Newtonian behaviour; manure between 3.6% and 6.5% total solids is pseudoplastic, and fits the power law; manure with more than 6.5% total solids exhibits non-Newtonian and time-dependent characteristics. The second part of this thesis investigates the flow of Newtonian and non-Newtonian fluids—represented by tap water and xanthan gum solution, respectively—within four lab-scale reactor geometries, using residence time distribution (RTD) experiments. The effect of reactor geometry, flow rate, and fluid viscosity are evaluated. In the third part of this thesis, flow conditions within lab-scale and pilot-scale anaerobic digester reactors are simulated using three-dimensional modeling techniques. The RTDs of lab-scale reactors as predicted by the 3D numerical models compare well to the experimental results. The 3D models are also validated using data from particle image velocimetry (PIV) experiments. Finally, the viscous properties of liquid hog manure at 3% and 8% total solids are incorporated into the models, and the results are evaluated.
|
35 |
Oxygen Transport Measured by Isotope Tracing through Solid OxidesWood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
|
36 |
Oxygen Transport Measured by Isotope Tracing through Solid OxidesWood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
|
37 |
Design and analysis of a photocatalytic bubble column reactorCox, Shane Joseph, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The current work has developed a CFD model to characterise a pseudo-annular photocatalytic bubble column reactor. The model development was divided into three stages. Firstly, hydrodynamic assessment of the multiphase fluid flow in the vessel, which incorporated residence time distribution analysis both numerically and experimentally for validation purposes. Secondly, the radiation distribution of the UV source was completed. The final stage incorporated the kinetics for the degradation the model pollutant, sodium oxalate. The hydrodynamics were modelled using an Eulerian-Eulerian approach to the multiphase system with the standard k- turbulence model. This research established that there was significant deviation in the fluid behaviour in the pseudo-annular reactor when compared with traditional cylindrical columns due to the nature of the internal structure. The residence time distribution study showed almost completely mixed flow in the liquid phase, whereas the gas phase more closely represented plug flow behaviour. Whilst there was significant dependence on the superficial gas flow rate the mixing behaviour demonstrated negligible dependence on the liquid superficial velocity or the liquid flow direction, either co- or counter- current with respect to the gas phase. The light distribution was modelled using a conservative variant of the Discrete Ordinate method. The model examined the contribution to the incident radiation within the reactor of both the gas bubbles and titanium dioxide particles. This work has established the importance of the gas phase in evaluating the light distribution and showed that it should be included when examining the light distribution in a gas-liquid-solid three-phase system. An optimal catalyst loading for the vessel was established to be 1g/L. Integration of the kinetics of sodium oxalate degradation was the final step is developing the complete CFD model. Species transport equations were employed to describe the distribution of pollutant concentration within the vessel. Using a response surface methodology it was shown that the reaction rate exhibited a greater dependency on the lamp power that the lamp length, however, the converse was true with the quantum efficiency. This work highlights the complexity of completely modelling a photocatalytic system and has demonstrated the applicability of CFD for this purpose.
|
38 |
Development and application of a modelling approach for distributed karst aquifer characterization and groundwater residence time derivationOehlmann, Sandra 09 September 2015 (has links)
No description available.
|
39 |
Estudo da distribuição do tempo de residência em um processo de pasteurização assistido por micro-ondas. / Study of the residence time distribution in a pasteurization process assisted by microwaves.Nilo Henrique Meira Fortes 22 August 2018 (has links)
O processo de pasteurização tem como objetivo garantir a segurança e qualidade nutricional do alimento e aumentar sua vida de prateleira. O conhecimento da distribuição do tempo de residência (DTR) do alimento em cada etapa do processo contínuo é importante para uma avaliação adequada do processo e das alterações que causa no alimento. Este trabalho tem como objetivo estudar a DTR em um processo de pasteurização contínuo assistido por micro-ondas aplicado a alimentos líquidos e propor modelos de escoamento para representá-la. Para isso, foram realizados experimentos de estímulo-resposta com alimentação tipo pulso por técnica condutimétrica utilizando uma solução saturada de NaCl como traçador. Com isso, foram obtidas as curvas de DTR do sistema completo, dos trocadores de calor das seções de pré-aquecimento e resfriamento, de seis tubos de retenção com diferentes diâmetros e comprimentos (volumes entre 40 e 125 mL) e do sistema de aquisição de dados de condutividade elétrica. Os experimentos foram realizados em quatro vazões volumétricas (0,5, 0,7, 0,9 e 1,1 L/min), a temperatura ambiente (19 a 26 °C) e como fluido de trabalho foi utilizada uma corrente de alimentação de água com concentração 0,5 g/L de NaCl para estabilizar a leitura de condutividade elétrica. Foram realizadas três repetições por vazão para o processo completo, trocadores de calor e tubos de retenção, e cinco repetições por vazão para o sistema de aquisição de dados, dada a maior sensibilidade. Observou-se a necessidade de realizar o procedimento de convolução numérica para avaliar a distorção na curva de DTR do processo causada pelo escoamento na célula do sistema de aquisição de dados. Foram testados cinco modelos de escoamento: dispersão axial, compartimentado PFR+CSTR, tanques em série, convecção generalizada e y-laminar. O critério de ajuste dos modelos foi a minimização do erro quadrático entre valores experimentais e calculados da curva E(t). Os modelos de dispersão axial e y-laminar foram o que apresentaram melhor ajuste para os tubos de retenção e o modelo de convecção generalizada apresentou melhor ajuste para os trocadores de calor. O regime de escoamento durante os experimentos variou entre laminar e de transição (valores de Reynolds entre 1259 e 4238). Os resultados para o sistema completo e trocadores de calor foram satisfatórios, para os tubos de retenção foi observada uma grande incerteza nos valores dos parâmetros e foi observada a importância da convolução numérica em sistemas de pequeno volume. / Pasteurization process aims to ensure the safety and nutritional quality of the food and increase its shelf life. The knowledge of residence time distribution (RTD) of the food in each step of continuous processes is important to evaluate the process and changes that it causes in foods. This work aims to study the RTD in a continuous pasteurization process assisted by microwave applied to liquid foods and propose flow models to represent it. For this reason, stimulus-response experiments by pulse injection were conducted by conductimetric technique using a saturated solution of NaCl as a tracer. Thus, it was obtained the RTD of the complete process, heat exchangers of preheating section and cooling section, six retention tubes with different diameters and lengths (volumes between 40 and 125 mL) and of the electrical conductivity data acquisition system. The experiments were carried out at four volumetric flow rates (0.5, 0.7, 0.9 and 1.1 L/min), at room temperature (19 to 26 °C) and water with 0.5 g/L of NaCl was used as the work fluid to stabilize the electrical conductivity reading. Three repetitions per volumetric flow rate were performed for the complete process, heat exchangers and holding tubes, and five repetitions per volumetric flow rate were performed for the data acquisition system, given the higher sensibility. It was observed the need to apply the numerical convolution procedure to evaluate the distortion in the RTD curve of the process caused by the flow through the data acquisition system. Five flow models were tested: axial dispersion, PFR+CSTR association, tanks in series, generalized convection and y-laminar. The adjustment criterion of the parameters was the minimization of the quadratic error between experimental and calculated E(t) values. The axial dispersion and y-laminar models provided the best adjustments for the holding tubes and the generalized convection model provided the best adjustment for the heat exchangers. The flow regime during the experiments varied between laminar and transition (Reynolds values between 1259 and 4238). The results for the complete system and heat exchangers were satisfactory, for the holding tubes was observed a great uncertainty in the parameters values and was observed the importance of numerical convolution in small volume systems.
|
40 |
Distribuição do tempo de residência e letalidade no processamento térmico contínuo de líquidos com escoamento laminar não ideal em trocadores bitubulares. / Residence time distribution and lethality in the continuous thermal processing of liquids with non ideal laminar flow in bitubular exchangers.Paula Rossato Pegoraro 02 March 2012 (has links)
Os trocadores de calor tubulares são muito utilizados para o processamento térmico de alimentos líquidos viscosos por possuírem um maior diâmetro hidráulico em comparação aos trocadores de calor a placas. O cálculo da letalidade neste tipo de trocador está diretamente relacionado ao perfil de velocidade e à distribuição do tempo de residência (DTR). Para escoamento laminar de fluidos viscosos, Newtonianos e não-Newtonianos, geralmente adota-se um perfil de velocidade laminar e de lei de potência, respectivamente. No entanto, algumas características do equipamento como irregularidades na tubulação, a corrugação do tubo ou as curvas podem modificar o perfil de velocidade ideal. Esse desvio da idealidade pode ser caracterizado através da determinação experimental da distribuição do tempo de residência do processo. Este trabalho teve como objetivo a determinação experimental da DTR de fluidos viscosos em um equipamento bitubular de processamento térmico e o ajuste do perfil de velocidade associado. Modelos clássicos de DTR foram ajustados aos dados, assim como foram propostos e testados novos modelos generalizados de DTR, a fim de caracterizar o escoamento laminar não ideal em tubos. A determinação da DTR experimental foi realizada para vazões entre 10 e 50 L/h utilizando água, solução de carboximeticelulose 1,0% (pseudoplástico) e mistura glicerina/água 80%. Os dados de DTR foram obtidos através de duas técnicas: condutimétrica e colorimétrica. A primeira técnica baseia-se na injeção de solução saturada de cloreto de sódio e detecção online por um condutivímetro, porém, não apresentou resultados satisfatórios mostrando que o método não é adequado para fluidos viscosos. Já a segunda técnica utilizada se baseia na injeção de corante e posterior detecção em espectrofotômetro. Os modelos que melhor se ajustaram aos dados experimentais para os três fluidos estudados foram os modelos generalizados y-laminar e exponencial. A letalidade foi calculada a partir da distribuição de temperatura no trocador de calor em estado estacionário e do tempo médio de residência obtido experimentalmente e permitiu detectar o sobreprocessamento no processo estudado. / Tubular heat exchangers are widely used for thermal processing of viscous liquid foods because they have larger hydraulic diameters than the plate heat exchangers. The calculation of lethality in this type of exchanger is directly related to velocity profile and the residence time distribution (RTD). For the laminar flow of viscous fluids, Newtonian and non-Newtonian, generally laminar and power law velocity profiles are used, respectively. However, some features of the equipment as irregularities in the pipe, the corrugation of the pipe or the presence of curves can change the ideal velocity profile. This ideality deviation can be characterized through the experimental determination of the residence time distribution of the process. The aim of this work was the experimental determination of the RTD of a viscous fluid in a bitubular thermal processing equipment and the determination of the associated velocity profile. Classic models of RTD were fitted to the data, as well as were proposed and tested new generalized models of RTD, in order to characterize the non ideal laminar flow in tubes. The experimental determination of RTD was performed to volumetric flow rates between 10 and 50 L/h using water, carboximeticelulose solution 1,0% (pseudoplastic) and glycerin/water mixture 80%. The RTD data were obtained through two techniques: conductimetric and colorimetric. The first technique is based on injection of saturated solution of sodium chloride and online detection with a conductivimeter however, unsatisfactory results showed that the method was not suitable for viscous fluids. The second technique is based on the injection of dye and subsequent detection with a spectrophotometer. The best fitted models to the experimental data for the three studied fluids were: ylaminar and exponential generalized models. The lethality was calculated from the temperature distribution in the heat exchanger at steady state and average residence time obtained experimentally and allowed the evaluation of the overprocessing of this process.
|
Page generated in 0.0645 seconds