• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 3
  • Tagged with
  • 36
  • 28
  • 20
  • 14
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolubilidade local de um campo complexo no plano com coeficientes Lipschitz

Eulalia de Moraes Melo, Maria January 1993 (has links)
Made available in DSpace on 2014-06-12T15:48:56Z (GMT). No. of bitstreams: 2 arquivo2720_1.pdf: 1139855 bytes, checksum: 4ab858d88a23329424b1f816c791599a (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 1993 / Neste trabalho provamos que um operador diferencial de primeira ordem de tipo principal com coeficientes Lipschitz na parte principal e termo de ordem zero localmente limitado e mensurável é localmente resolúvel em R2 se verifica a condição
2

Resolubilidade local de equações semilineares no plano / Local solvability of semilinear equations in the plane

Yamaoka, Luís Cláudio 29 September 2006 (has links)
Seja Ω ⊂ ℝ2 aberto contendo a origem. Denotando as variáveis por (x,t), provamos a resolubilidade local, em um disco D aberto centrado na origem, D ⊂ Ω, de equações semilineares da forma Pu = f(x,t,u); onde P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 e f ∈ C2 (Ω × ℂ), usando o princípio da contração; P = ∂t - itk∂x, k: número inteiro positivo par e f ∈ C∞(ℝ2 × ℂ), usando o teorema da resolubilidade local de Hounie e Santiago. / Let Ω be an open set of ℝ2 containing the origin. Using the variables (x,t), we prove the local solvability, on an open ball D centered at the origin, D ⊂ Ω, of semilinear equations of the form Pu = f(x,t,u); where P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 and f ∈ C2 (Ω × ℂ), using the principle of contracting mappings; P = ∂t - itk∂x, k: even positive integer number and f ∈ C∞(ℝ2 × ℂ), using the local solvability theorem of Hounie and Santiago.
3

Resolubilidade local de equações semilineares no plano / Local solvability of semilinear equations in the plane

Luís Cláudio Yamaoka 29 September 2006 (has links)
Seja Ω ⊂ ℝ2 aberto contendo a origem. Denotando as variáveis por (x,t), provamos a resolubilidade local, em um disco D aberto centrado na origem, D ⊂ Ω, de equações semilineares da forma Pu = f(x,t,u); onde P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 e f ∈ C2 (Ω × ℂ), usando o princípio da contração; P = ∂t - itk∂x, k: número inteiro positivo par e f ∈ C∞(ℝ2 × ℂ), usando o teorema da resolubilidade local de Hounie e Santiago. / Let Ω be an open set of ℝ2 containing the origin. Using the variables (x,t), we prove the local solvability, on an open ball D centered at the origin, D ⊂ Ω, of semilinear equations of the form Pu = f(x,t,u); where P = ∂t + a(x,t)∂x, a ∈ C2 (Ω), Im ≠ 0 and f ∈ C2 (Ω × ℂ), using the principle of contracting mappings; P = ∂t - itk∂x, k: even positive integer number and f ∈ C∞(ℝ2 × ℂ), using the local solvability theorem of Hounie and Santiago.
4

Resolubilidade semiglobal e global para uma classe de campos vetoriais complexos em variedades diferenciáveis / Semi-global and global solvability for a class of complex vector fields in differentiable manifolds

Victor, Bruno de Lessa 03 March 2017 (has links)
Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
5

Resolubilidade semiglobal e global para uma classe de campos vetoriais complexos em variedades diferenciáveis / Semi-global and global solvability for a class of complex vector fields in differentiable manifolds

Bruno de Lessa Victor 03 March 2017 (has links)
Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
6

Operadores ultradiferenciais no estudo de resolubilidade e regularidade Gevrey / Ultradifferential operators in the study of Gevrey solvability and regularity

Ragognette, Luis Fernando 04 November 2016 (has links)
A essência desta tese são resultados e aplicações da teoria de operadores de ordem infinita. A ideia central deste trabalho é um teorema de representação de ultradistribuições a partir de operadores ultradiferenciais agindo em funções Gevrey. Essa representação junto com a regularidade do kernel destes operadores nos permite importar uma dada propriedade válida para funções Gevrey para o contexto de ultradistribuições e vice-versa. Aproveitamos estes teoremas para aprender um pouco mais sobre a resolubilidade local de complexos induzidos por estruturas localmente integráveis. Definimos três conceitos de resolubilidade local destes complexos no ambiente Gevrey e provamos a equivalência entre eles. Para tanto, foi necessário estudar espaços de funções Gevrey com respeito a uma dada estrutura hipo-analítica e investigar quando este novo espaço é isomorfo ao usual. E isto nos permitiu entender melhor a ação dos operadores considerados e o papel por eles desempenhado nesta teoria. / The essence of this thesis are results and applications of the theory of infinite order operators. The central idea of this work is a representation theorem of ultradistributions by ultradifferential operators acting on Gevrey functions. This representation together with the regularity of the kernel of these operators allow us to import a given property from Gevrey functions to the ultradistribution context and vice versa. We took advantage of these theorems to learn a little more about the local solvability of the complexes induced by locally integrable structures. We defined three concepts of local solvability of these complexes in the Gevrey environment and we proved that they are equivalent. To do so, it was necessary to study the space of the Gevrey functions with respect to a given hypo-analytic structure and to investigate when this new space is isomorphic to the usual one. And this allowed us to better understand the action of the considered operators and their role in this theory.
7

Operadores ultradiferenciais no estudo de resolubilidade e regularidade Gevrey / Ultradifferential operators in the study of Gevrey solvability and regularity

Luis Fernando Ragognette 04 November 2016 (has links)
A essência desta tese são resultados e aplicações da teoria de operadores de ordem infinita. A ideia central deste trabalho é um teorema de representação de ultradistribuições a partir de operadores ultradiferenciais agindo em funções Gevrey. Essa representação junto com a regularidade do kernel destes operadores nos permite importar uma dada propriedade válida para funções Gevrey para o contexto de ultradistribuições e vice-versa. Aproveitamos estes teoremas para aprender um pouco mais sobre a resolubilidade local de complexos induzidos por estruturas localmente integráveis. Definimos três conceitos de resolubilidade local destes complexos no ambiente Gevrey e provamos a equivalência entre eles. Para tanto, foi necessário estudar espaços de funções Gevrey com respeito a uma dada estrutura hipo-analítica e investigar quando este novo espaço é isomorfo ao usual. E isto nos permitiu entender melhor a ação dos operadores considerados e o papel por eles desempenhado nesta teoria. / The essence of this thesis are results and applications of the theory of infinite order operators. The central idea of this work is a representation theorem of ultradistributions by ultradifferential operators acting on Gevrey functions. This representation together with the regularity of the kernel of these operators allow us to import a given property from Gevrey functions to the ultradistribution context and vice versa. We took advantage of these theorems to learn a little more about the local solvability of the complexes induced by locally integrable structures. We defined three concepts of local solvability of these complexes in the Gevrey environment and we proved that they are equivalent. To do so, it was necessary to study the space of the Gevrey functions with respect to a given hypo-analytic structure and to investigate when this new space is isomorphic to the usual one. And this allowed us to better understand the action of the considered operators and their role in this theory.
8

Global solvability of systems on compact surfaces / Resolubilidade global de sistemas em superfícies compactas

Zugliani, Giuliano Angelo 25 July 2014 (has links)
We are interested in studying an involutive system defined by a closed non-exact 1-form on a closed and orientable surface. Here we present a necessary condition for the global solvability of this system. We also make some particular constructions of globally solvable systems that motivate the equivalence between the global solvability and the necessary condition, for two cases involving 1-forms of the Morse type, namely, when the surface is the bitorus or when the 1-form is generic / Nosso interesse é estudar um sistema involutivo definido por uma 1-forma fechada e não-exata em uma superfície fechada e orientável. Apresentamos aqui uma condição necessária para a resolubilidade global desde sistema. Nós também construímos exemplos de sistemas globalmente resolúveis que nos permitiram fornecer a equivalência entre a resolubilidade global e a condição necessária, para dois casos envolvendo 1-formas do tipo Morse: quando a superfície é o bitoro ou quando a 1-forma é genérica
9

Resolubilidade global para campos vetoriais no toro n-dimensional / Global solvability for vector fields on the n-torus

Gonzalez, Rafael Borro 02 March 2015 (has links)
Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada. / We are concerned with the study of properties so that we can solve certain partial differential equations. We will consider equations of the form Lu = f; where we take L in some classes of vector fields on tori of dimension greater than two. This vector fields are viewed as operators acting on the space of smooth functions deffned on the torus. The main questions to study the closedness of the range of L. It is also of interest to know whe ther the range has finite codimension, as well as to study the regularity of L. The answers of these questions are connected with certain properties of the coeffcients of L; such as: Diophantine conditions; the connectedness of some sublevel sets involving primitive so fthe imaginary part of the coeffcients; the order of vanishing of each coeffcient and relations between the order of vanishing of the real and imaginary parts of each coeffcient; in addition, the number of times that the imaginary part of a coeffcient c changes sign between two consecutive zeros of c also plays a role. We characterize both global solvability and hypoellipticity for vector fields of tube type on tori of dimension greater than two, extending the results in dimension two. More over, in dimension three, we find conditions for the closedness of the range for a class of vector fields which are not of tube type. One of theese conditions is related to the well known Nirenberg-Treves condition (P). In particular,we obtain the same for a class of vector fields on the two- torus,for which the codimension of the range was largely studied.
10

Resolubilidade global para uma classe de sistemas involutivos / Global solvability for a class of involutive systems

Medeira, Cléber de 30 March 2012 (has links)
Estudamos a resolubilidade global de uma classe de sistemas involutivos com n campos vetoriais suaves definidos no toro de dimensão n + 1. Obtemos uma caracterização completa para o caso desacoplado desta classe em termos de formas de Liouville e da conexidade de todos os subníveis e superníveis, no espaço de recobrimento minimal, de uma primitiva global da 1-forma associada ao sistema. Além disso, apresentamos uma situação especial na qual o sistema não é globalmente resolúvel e usamos isso para obter alguns resultados em um caso com acoplamento mais forte / We study the global solvability of a class of involutive systems with n smooth vector fields on the torus of dimension n + 1. We obtain a complete characterization for the uncoupled case of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space. Also, we exhibit a special situation where the system is not globally solvable and we use this to obtain some results in a more general case

Page generated in 0.0536 seconds