• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 49
  • 29
  • 26
  • 20
  • 19
  • 16
  • 15
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 91
  • 70
  • 70
  • 66
  • 60
  • 56
  • 54
  • 52
  • 51
  • 51
  • 50
  • 47
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

New geometries for ring resonator sensing

Catherall, Thomas January 2017 (has links)
This thesis presents a detailed study of complementary metal-oxide-semiconductor (CMOS) compatible silicon waveguide and ring resonator technologies. The project specifically focuses on a range of slotted ring resonator configurations comprised of rib-style waveguides. Single ring resonators and Mach-Zehnder interferometers with double rings and central drop port channels have been successfully characterised. Thermal tuning techniques using on-chip heaters were used to determine their sensitivities. A stringent signal cleaning method was also developed to remove systematic background noise. Analysing the transmission signals produced by the Mach-Zehnder interferometers with double rings and a central drop port, it was revealed that coupled resonator induced transparency (CRIT) is created along with Fano-type resonances when the resonant peaks of the two ring resonators are tuned to overlap. The tuning of these features revealed a 2.7 and 2-fold improvement in device sensitivity. A 3x3 transfer matrix model has been developed to simulate the behaviour of light travelling through this configuration. Modelling suggests that effective refractive index and relative phase are the key factors in determining this behaviour. When tuned to close proximity, a resonant ‘superstate’ is achieved in which a modified model is required. Applying the single ring resonators to biosensing applications, basic refractive index testing and a glucose sensing calibration were conducted. A polydimethylsiloxane (PDMS) based microfluidics system was also developed to improve the reliability of sensing and enable automation. Using silicon nitride ring resonators with inkjet-printed upconverting nanoparticles, it was found that the evanescent field of the rings could stimulate the upconversion process revealing visible spectrum emission around the rings.
182

Estudo experimental e numÃrico de uma antena ressoadora dielÃtrica baseada em CaTi1Âx(Nb2=3Li1=3)xO3ÂÂ (CNLTO) e CaTi1Âx(Nb1=2Ln1=2)xO3 (Ln = Bi (CNBTO) e Fe (CNFTO)) para aplicaÃÃes em bluetooth / Experimental and numerical study of based dieletric a resonator antenna in CaTi1Âx(Nb2=3Li1=3)xO3ÂÂ (CNLTO) and CaTi1Âx(Nb1=2Ln1=2)xO3 (Ln = Bi (CNBTO) and Fe (CNFTO)) for applications in bluetooth

Rodrigo Carvalho Souza Costa 10 September 2007 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O progresso da indÃstria de telecomunicaÃÃes depende da fabricaÃÃo em larga escala de circuitos de baixo custo, alto desempenho elÃtrico, confiabilidade e passividade de miniaturizaÃÃo. Estas caracterÃsticas sÃo necessÃrias para garantir que os sinais transmitidos sejam confinados a uma freqÃÃncia bem definida, evitando assim sinais que possam interferir no desempenho satisfatÃrio de sistemas de telecomunicaÃÃes. As cerÃmicas dielÃtricas fornecem vantagens significantes em termos de compactaÃÃo, peso, estabilidade tÃrmica e custos de produÃÃo em dispositivos de micro-ondas, alÃm de possuir uma grande facilidade de integraÃÃo com outros circuitos integrados de microondas. Este trabalho consiste no desenvolvimento e caracterizaÃÃo de um novo tipo de material cerÃmico para ser utilizado como uma antena miniatura para aplicaÃÃes em Bluetooth (2.4 GHz). O trabalho està dividido em trÃs etapas. A primeira consiste em desenvolver um novo material que possua constante dielÃtrica (25 < Âr < 50), um alto fator de qualidade (Q > 5000) e um coeficiente de temperatura da freqÃÃncia de ressonÃncia (Âf ) prÃximo de zero. A segunda consiste em caracterizar o material desenvolvido atravÃs de DifraÃÃo de Raios-X e Espectroscopias Raman, Infra-vermelho e DielÃtrica. A Ãltima etapa consiste em fabricar e simular a antena feita com o material desenvolvido, comparando o desempenho teÃrico com o prÃtico. / The progress of telecommunication industry is highly dependent of the fabrication of low cost, quality factor and smaller size of the individual components for commercial applications. This kind of characteristics are necessary to warranty that the signal have well suited frequency, avoiding the noise interference signals, that could affect the performance of the telecommunication systems. Dielectric ceramics have significant advantages of light weight, low cost, small size, low profile, high radiation eficiency, low production cost and ease of integration with other active or passive microwave integrated circuit. This work will provide a new ceramic material that could be used in a miniature antenna for Bluetooth applications. This work is divided in three stages. The first one is develop a new material with a good dielectric permittivity (25 < Âr < 50), high quality factor (Q > 5000) and low temperature coeficient of resonant frequency (Âf ). The second one characterize the developed material by XDR, Raman, Infrared and dielectric spectroscopy in microwave region. The last one is build and simulate the antenna made with the developed dielectric material.
183

Projeto de filtros de microondas passa-faixa planares utilizando ressoadores patch dual-mode. / Design of microwave planar bandpass filters using dual-mode patch resonators.

Ariana Maria da Conceição Lacorte Caniato Serrano 10 October 2007 (has links)
Esta dissertação de mestrado apresenta uma metodologia de projeto de filtros de microondas planares passa-faixa tipo patch dual-mode, que associam baixas perdas nos condutores, boa capacidade de potência, rejeição da banda de segunda harmônica e miniaturização. Utilizou-se a ferramenta computacional MATLAB para desenvolver programas de cálculo de dimensões de ressoadores patch single-mode em função da freqüência fundamental e do substrato escolhido, bem como para cálculo da distribuição de campos eletromagnéticos (EM) ao longo destes ressoadores. O simulador EM 3D Momentum/ADS foi utilizado na análise, otimização e simulação do desempenho dos filtros. A metodologia desenvolvida consiste no projeto do ressoador patch single-mode nas geometrias quadrada, triangular e circular, com perturbações tais que resultem na freqüência central e banda de passagem desejadas para o filtro, bem como na miniaturização do mesmo. A metodologia engloba a análise do posicionamento das linhas de entrada e de saída para excitação dos modos desejados e seu acoplamento ao ressoador projetado. Foram propostos três ressoadores patch com topologias originais, modificados pela inserção de fendas, os quais foram aplicados ao projeto, construção e caracterização de cinco filtros. Desses, dois filtros passa-faixa dual-mode de banda mediana utilizam a nova topologia proposta de ressoador patch quadrado. Esses filtros, com dois e com quatro pólos, operam em 2,4 GHz e 2,35 GHz, com banda de passagem fracional de 14% e 9,8%, respectivamente. Outros dois filtros passa-faixa dual-mode de banda estreita, um com dois pólos e outro com quatro pólos, utilizam a topologia original proposta de ressoador patch triangular, com fenda em forma de \"T\" invertido. O filtro com dois pólos opera em 7,8 GHz, com banda de passagem fracional de 4,3% e o filtro de quatro pólos, em 7,5 GHz, com banda de 3,5%. Por fim, o filtro passa-faixa circular banda larga utiliza o ressoador patch circular proposto, que foi modificado para operar como triple-mode, comportamento inédito na literatura internacional enfocando ressoadores patch. Esse filtro triple-mode com três pólos apresenta freqüência central de 2,4 GHz e banda fracional de 29%. Os resultados experimentais validam a aplicação da metodologia, que apresenta grande flexibilidade no projeto de filtros com bandas estreitas, medianas ou largas, com boa rejeição na faixa de segunda harmônica (resultados acima de 13 dB). Conseguem-se leiautes miniaturizados com redução em área maior que 50% e ao mesmo tempo sem dimensões críticas, o que resulta em facilidade de fabricação através de métodos tradicionais de fotogravação em placas de circuito impresso. / This dissertation presents a methodology for the design of microwave planar bandpass filters using dual-mode patch resonators, which have low conductor loss, high power handling, second harmonic band rejection and miniaturization. MatLab software was used to develop routines that can calculate the dimensions of the single-mode patch resonators as a function of their fundamental frequency and of the chosen substrate. Further, these routines are able to calculate the electromagnetic (EM) field patterns across these resonators. Momentum/ADS EM 3D software was used for the analysis, optimization and simulation of the performance of the filters. The developed methodology consists on the design of the single-mode patch resonator in either square, rounded or triangular shape with perturbations that result in the desired filter\'s central frequency and bandwidth, and also in its miniaturization. The methodology involves the positioning of the input and output transmission lines to excite the desired modes and their coupling to the developed resonator. Three patch resonators were proposed with novel topologies that were modified by the insertion of slots, and applied to the design, fabrication, and measurements of five filters. Out of these five filters, two are dualmode medium band filters that use the proposed new topology for the square patch resonator. These filters, with two and four poles, are centered at 2.4 GHz and 2.35 GHz, with fractional bandwidth of 14% and 9.8%, respectively. Other two filters are dual-mode narrowband filters, a two-pole and a four-pole, that use the original topology proposed for the triangular patch resonator with a \"T\"-shaped slot. The two-pole filter is centered at 7.8 GHz with fractional bandwidth of 4.3%, whereas the four-pole filter is centered at 7.5 GHz with 3.5% of bandwidth. The last filter is a broadband circular filter that uses the proposed circular triplemode patch resonator, which is a brand new behavior in the international literature that focus on patch resonators. This triple-mode filter with three poles is centered at 2.4 GHz with fractional bandwidth of 29%. Experimental results validate the methodology, which presents wide filter design flexibility with narrow, medium or broad bands, and good second harmonic rejection (results better than 13 dB). Layouts can be designed with more than 50% of area reduction, and without critical dimensions at the same time, resulting in a simple fabrication that utilizes conventional PCB photopatterning process.
184

Projeto de filtros de microondas passa-faixa planares utilizando ressoadores patch dual-mode. / Design of microwave planar bandpass filters using dual-mode patch resonators.

Serrano, Ariana Maria da Conceição Lacorte Caniato 10 October 2007 (has links)
Esta dissertação de mestrado apresenta uma metodologia de projeto de filtros de microondas planares passa-faixa tipo patch dual-mode, que associam baixas perdas nos condutores, boa capacidade de potência, rejeição da banda de segunda harmônica e miniaturização. Utilizou-se a ferramenta computacional MATLAB para desenvolver programas de cálculo de dimensões de ressoadores patch single-mode em função da freqüência fundamental e do substrato escolhido, bem como para cálculo da distribuição de campos eletromagnéticos (EM) ao longo destes ressoadores. O simulador EM 3D Momentum/ADS foi utilizado na análise, otimização e simulação do desempenho dos filtros. A metodologia desenvolvida consiste no projeto do ressoador patch single-mode nas geometrias quadrada, triangular e circular, com perturbações tais que resultem na freqüência central e banda de passagem desejadas para o filtro, bem como na miniaturização do mesmo. A metodologia engloba a análise do posicionamento das linhas de entrada e de saída para excitação dos modos desejados e seu acoplamento ao ressoador projetado. Foram propostos três ressoadores patch com topologias originais, modificados pela inserção de fendas, os quais foram aplicados ao projeto, construção e caracterização de cinco filtros. Desses, dois filtros passa-faixa dual-mode de banda mediana utilizam a nova topologia proposta de ressoador patch quadrado. Esses filtros, com dois e com quatro pólos, operam em 2,4 GHz e 2,35 GHz, com banda de passagem fracional de 14% e 9,8%, respectivamente. Outros dois filtros passa-faixa dual-mode de banda estreita, um com dois pólos e outro com quatro pólos, utilizam a topologia original proposta de ressoador patch triangular, com fenda em forma de \"T\" invertido. O filtro com dois pólos opera em 7,8 GHz, com banda de passagem fracional de 4,3% e o filtro de quatro pólos, em 7,5 GHz, com banda de 3,5%. Por fim, o filtro passa-faixa circular banda larga utiliza o ressoador patch circular proposto, que foi modificado para operar como triple-mode, comportamento inédito na literatura internacional enfocando ressoadores patch. Esse filtro triple-mode com três pólos apresenta freqüência central de 2,4 GHz e banda fracional de 29%. Os resultados experimentais validam a aplicação da metodologia, que apresenta grande flexibilidade no projeto de filtros com bandas estreitas, medianas ou largas, com boa rejeição na faixa de segunda harmônica (resultados acima de 13 dB). Conseguem-se leiautes miniaturizados com redução em área maior que 50% e ao mesmo tempo sem dimensões críticas, o que resulta em facilidade de fabricação através de métodos tradicionais de fotogravação em placas de circuito impresso. / This dissertation presents a methodology for the design of microwave planar bandpass filters using dual-mode patch resonators, which have low conductor loss, high power handling, second harmonic band rejection and miniaturization. MatLab software was used to develop routines that can calculate the dimensions of the single-mode patch resonators as a function of their fundamental frequency and of the chosen substrate. Further, these routines are able to calculate the electromagnetic (EM) field patterns across these resonators. Momentum/ADS EM 3D software was used for the analysis, optimization and simulation of the performance of the filters. The developed methodology consists on the design of the single-mode patch resonator in either square, rounded or triangular shape with perturbations that result in the desired filter\'s central frequency and bandwidth, and also in its miniaturization. The methodology involves the positioning of the input and output transmission lines to excite the desired modes and their coupling to the developed resonator. Three patch resonators were proposed with novel topologies that were modified by the insertion of slots, and applied to the design, fabrication, and measurements of five filters. Out of these five filters, two are dualmode medium band filters that use the proposed new topology for the square patch resonator. These filters, with two and four poles, are centered at 2.4 GHz and 2.35 GHz, with fractional bandwidth of 14% and 9.8%, respectively. Other two filters are dual-mode narrowband filters, a two-pole and a four-pole, that use the original topology proposed for the triangular patch resonator with a \"T\"-shaped slot. The two-pole filter is centered at 7.8 GHz with fractional bandwidth of 4.3%, whereas the four-pole filter is centered at 7.5 GHz with 3.5% of bandwidth. The last filter is a broadband circular filter that uses the proposed circular triplemode patch resonator, which is a brand new behavior in the international literature that focus on patch resonators. This triple-mode filter with three poles is centered at 2.4 GHz with fractional bandwidth of 29%. Experimental results validate the methodology, which presents wide filter design flexibility with narrow, medium or broad bands, and good second harmonic rejection (results better than 13 dB). Layouts can be designed with more than 50% of area reduction, and without critical dimensions at the same time, resulting in a simple fabrication that utilizes conventional PCB photopatterning process.
185

Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung / Vertical and lateral emission properties of semiconductor quantum-dot-microresonators in the regime of weak and strong light matter interaction

Albert, Ferdinand January 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt. / The present work deals with the light-matter interaction in quantum dot microcavities and their vertical and lateral emission properties. Quantum dots are nanoscopic structures, in which charge carriers are confi� ned in all three dimensions below the de-Broglie wavelength. As a consequence, the density of electronic states becomes singular and quantum dots are therefore referred to as arti� cal atoms. To modify the emission properties of quantum dots, they are introduced in micropillar cavities. These consist of a GaAs � -cavity, which is sandwiched between two Bragg mirrors of alternating layers of GaAs and AlAs. The micropillar resonators provide both a vertical emission via Fabry-P� erot modes, as well as a lateral emission via whispering gallery modes. The light-matter interaction between the microcavity modes and the localized charge carriers, called exzitons, can be devided into two regimes. In the strong coupling regime, the spontaneous emission process becomes reversible and an emitted photon can be reabsorbed by the quantum dot. The theoretical description of the coupling of a two-level emitter with a photonic mode is given by the Jaynes-Cummings model. For multiple two-level emitters, it can be extended to the Tavis-Cummings model. In the weak coupling regime the spontaneous emission rate of a quantum dot can be increased by the Purcell e� ect. Here, microlasers with high spontaneous emission coupling factors and low lasing thresholds can be realized. In order to investigate the samples, especially the methods of microelectroluminescence and photon correlation measurements are applied.
186

Advanced MEMS Pressure Sensors Operating in Fluids

Anderås, Emil January 2012 (has links)
Today’s MEMS technology allows manufacturing of miniaturized, low power sensors that sometimes exceeds the performance of conventional sensors. The pressure sensor market today is dominated by MEMS pressure sensors. In this thesis two different pressure sensor techniques are studied. The first concerns ways to improve the sensitivity in the most commonly occurring pressure sensor, namely such based on the piezoresistive technique. Since the giant piezoresistive effect was observed in silicon nanowires, it was assumed that a similar effect could be expected in nano-thin silicon films. However, it turned out that the conductivity was extremely sensitive to substrate bias and could therefore be controlled by varying the backside potential. Another important parameter was the resistivity time drift. Long time measurements showed a drastic variation in the resistance. Not even after several hours of measurement was steady state reached. The drift is explained by hole injection into the buried oxide as well as existence of mobile charges. The piezoresistive effect was studied and shown to be of the same magnitude as in bulk silicon. Later research has shown the existence of such an effect where the film thickness has to be less than around 20 nm.  The second area that has been studied is the pressure sensitivity of in acoustic resonators. Aluminium nitride thin film plate acoustic resonators (FPAR) operating at the lowest-order symmetric (S0), the first-order asymmetric (A1) as well as the first-order symmetric (S1) Lamb modes have been theoretically and experimentally studied in a comparative manner. The S0 Lamb mode is identified as the most pressure sensitive FPAR mode. The theoretical predictions were found to be in good agreement with the experiments. Additionally, the Lamb modes have been tested for their sensitivities to mass loading and their ability to operate in liquids, where the S0 mode showed good results. Finally, the pressure sensitivity in aluminium nitride thin film bulk wave resonators employing c- and tilted c-axis texture has been studied. The c-axis tilted FBAR demonstrates a substantially higher pressure sensitivity compared to its c-axis oriented counterpart.
187

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason 21 March 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
188

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason 21 March 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
189

Integrated Circuit and Antenna Technology for Millimeter-wave Phased Array Radio Front-end

Nezhad Ahmadi Mohabadi, Mohammad Reza January 2010 (has links)
Ever growing demands for higher data rate and bandwidth are pushing extremely high data rate wireless applications to millimeter-wave band (30-300GHz), where sufficient bandwidth is available and high data rate wireless can be achieved without using complex modulation schemes. In addition to the communication applications, millimeter-wave band has enabled novel short range and long range radar sensors for automotive as well as high resolution imaging systems for medical and security. Small size, high gain antennas, unlicensed and worldwide availability of released bands for communication and a number of other applications are other advantages of the millimeter-wave band. The major obstacle for the wide deployment of commercial wireless and radar systems in this frequency range is the high cost and bulky nature of existing GaAs- and InP-based solutions. In recent years, with the rapid scaling and development of the silicon-based integrated circuit technologies such as CMOS and SiGe, low cost technologies have shown acceptable millimeter-wave performance, which can enable highly integrated millimeter-wave radio devices and reduce the cost significantly. Furthermore, at this range of frequencies, on-chip antenna becomes feasible and can be considered as an attractive solution that can further reduce the cost and complexity of the radio package. The propagation channel challenges for the realization of low cost and reliable silicon-based communication devices at millimeter-wave band are severe path loss as well as shadowing loss of human body. Silicon technology challenges are low-Q passive components, low breakdown voltage of active devices, and low efficiency of on-chip antennas. The main objective of this thesis is to investigate and to develop antenna and front-end for cost-effective silicon based millimeter-wave phased array radio architectures that can address above challenges for short range, high data rate wireless communication as well as radar applications. Although the proposed concepts and the results obtained in this research are general, as an important example, the application focus in this research is placed on the radio aspects of emerging 60 GHz communication system. For this particular but extremely important case, various aspects of the technology including standard, architecture, antenna options and indoor propagation channel at presence of a human body are studied. On-chip dielectric resonator antenna as a radiation efficiency improvement technique for an on-chip antenna on low resistivity silicon is presented, developed and proved by measurement. Radiation efficiency of about 50% was measured which is a significant improvement in the radiation efficiency of on-chip antennas. Also as a further step, integration of the proposed high efficiency antenna with an amplifier in transmit and receive configurations at 30 GHz is successfully demonstrated. For the implementation of a low cost millimeter-wave array antenna, miniaturized, and efficient antenna structures in a new integrated passive device technology using high resistivity silicon are designed and developed. Front-end circuit blocks such as variable gain LNA, continuous passive and active phase shifters are investigated, designed and developed for a 60GHz phased array radio in CMOS technology. Finally, two-element CMOS phased array front-ends based on passive and active phase shifting architectures are proposed, developed and compared.
190

Fast Methods for Millimeter-wave Dielectric Resonator and Antenna Analysis and Design

Chen, Huanyu January 2009 (has links)
Ever-increasing interest in millimeter-wave and terahertz spectrum has prompted research and development of novel passive components working at these frequencies. Compared with the conventional planar components, non-planar dielectric devices become more attractive as frequencies increase due to their higher quality factors and dimensional tolerances. In this thesis, we present fast methods to analyze the millimeter-wave dielectric resonator and rod antenna. First, an analytical method has been developed to evaluate resonant frequencies, quality factors of the Whispering Gallery Mode (WGM) disk resonators and also the resonator-waveguide coupling. A numerical solver based on full-wave finite element method is implemented to verify the analytical result. This analytical model provides a solution for fast design and optimization of WGM resonators in filter and sensor applications. Secondly, a fast analytical approach based on local mode theory is introduced to calculate the radiation from tapered dielectric rod antenna. This efficient approximate model consumes much less computing resources and time, and demonstrates good agreements with full-wave numerical results. It supplies a quantitative way to understand the radiation mechanism and interaction between different parts of the antenna. Based on this, design criteria for the taper profile of rod antennas are given.

Page generated in 0.0987 seconds