• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 83
  • 20
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 371
  • 40
  • 35
  • 32
  • 30
  • 29
  • 26
  • 24
  • 23
  • 22
  • 22
  • 21
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Epigenetic Regulation of Breast Cancer Type-1 Gene by the Activated Aromatic Hydrocarbon Receptor and the Preventative Effects of Resveratrol

Papoutsis, Andreas January 2012 (has links)
Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorobenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XRE in the proximal BRCA-1 promoter, and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-alpha-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17-beta estradiol (E2)-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR, DNA methyl transferases (DNMT)1, DNMT3a, and DNMT3b; methyl binding protein (MBD)2; and tri-methylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation, and the recruitment of the AhR, MBD2, H3K9me3, and DNMTs (1, 3a, and 3b). Taken together, these observations provide evidence for a mechanistic role for AhR-agonists in establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.
142

THE ACUTE IMPACT OF A SINGLE DOSE OF RESVERATROL ON INSULIN SENSITIVITY, WHOLE BODY FAT OXIDATION, AND INTRACELLULAR SIGNALING IN SKELETAL MUSCLE AND ADIPOSE TISSUE IN OVERWEIGHT AND OBESE MEN

WILLIAMS, CAMERON 06 June 2013 (has links)
Resveratrol (RSV) is a natural compound that improves mitochondrial function and metabolic health in animal models. Thus far, RSV’s effects on metabolic outcomes in humans are controversial, and RSV’s acute mechanism has not yet been confirmed in vivo. This study aimed to evaluate the effect of an acute dose of RSV on insulin sensitivity and fatty acid oxidation, and to determine RSV’s mechanism of action in human skeletal muscle and adipose tissue. Overweight males (n=8; BMI, 30.5±3.6; VO2peak, 34.0±7.3 ml/kg) reported to the lab on 2 occasions and were provided a breakfast supplemented with 0.3g of RSV or a placebo pill. Experiments were performed in random order using a double blind crossover design. Gas exchange measures, blood samples, and skeletal muscle and adipose tissue biopsies were obtained before and 2 hours after the supplement meal. RSV acutely improved insulin sensitivity, but had no effect on fatty acid oxidation. Additionally, RSV supplementation had no effect on the intracellular signaling of key proteins proposed to mediate its effects in skeletal muscle and adipose tissue. Taken together, these results suggest a single dose of RSV can acutely enhance insulin sensitivity, but its mechanism of action is not conserved across species, and its intracellular signaling pathway is different in humans than previously thought. Due to its insulin sensitizing effect, RSV retains its clinical value, but further research is required to determine its most useful application for human metabolic health. / Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2013-06-06 13:30:03.522
143

THE NATURAL POLYPHENOL RESVERATROL POTENTIATES THE LETHALITY OF HDAC INHIBITORS IN ACUTE MYELOGENOUS LEUKEMIA CELLS THROUGH MULTIPLE MECHANISMS.

Yaseen, Alae Abod 02 May 2011 (has links)
This study examined the mechanisms underlying the interactions between the natural polyphenol Resveratrol and HDAC inhibitors in both U937 myelomonocytic leukemia cell line and blood samples from AML patients and normal cord blood. Simultaneous exposure to Resveratrol and HDAC inhibitors (Vorinostat-SAHA or Panobinostat-LBH589) resulted in potentiating the lethality caused by any single agent of the combination, this interaction found to be synergistic at multiple concentrations. Exposing U937 cells to minimal toxic doses of Resveratrol and HDACIs results in release of mitochondrial pro-apoptotic proteins AIF and cytochrome c, pro-apoptotic caspase activation especially caspase-8, and induction of DNA damage. These events were associated with increase deacetylation of NF-κB and reactive oxygen species generation, as well as G0-G1 cell cycle arrest. Genetic knockdown of SIRT1 (a deacetylator of NF-κB that is upregulated by Resveratrol) resulted in significant increase in NF-κB acetylation and activity. However, SIRT1 knock down failed to protect U937 cells against combination-induced cell death, implying the possibility of the involvement of other mechanisms in inducing cell death rather than NF-κB deactivation only. Co-incubation of the antioxidant vi MnTBAP significantly reduced Resveratrol/HDACIs induced cell death, and resulted in a marked decrease in caspase-8, caspase-3, and PARP activation. Finally, the combined treatment of Resveratrol/HDACIs induce cell cycle changes possibly through Resveratrol action of blocking cell cycle in S phase exposing more cells to HDACIs lethality. Collectively, these finding indicate that the combined regimen of Resveratrol and HDAC inhibitors promote lethality in U937 cells and primary AML cells by a variety of mechanisms. The approved use of both agents in clinical setting make future clinical studies for development of this drug regimen a potential option in the battle with leukemia.
144

FOOD FOR BURNOUT PATIENTS : A Systematic Review of the Efficacy of Dietary Polyphenols on Neurogenesis

Redgård, Nicklas January 2019 (has links)
Stress-related psychological ill health has increased dramatically in Europe. A diagnosis equivalent to occupational burnout can be found in the Swedish version of the tenth edition of the “International Statistical Classification of Diseases and Related Health Problems" by the World Health Organization. The Swedish National Board of Health and Welfare lists treatment suggestions including a section of self-care that recommended something that could be translated to “a sensible diet” (“vettig kost”) without providing evidence for what could constitute a sensible diet. By using the hypothesis of burnout being a stress-mediated decrease in neurogenesis which in turn decrease the ability to cope with stress, this article systematically reviews the efficacy of dietary polyphenols on neurogenesis in rodents to evaluate if dietary polyphenols could constitute a part of a sensible diet for burnout patients. Dietary polyphenols significantly increased various parts of neurogenesis, in rodents subjected to stressors, in some cases demonstrating effect sizes comparable to antidepressants. Adverse effects have been observed in extremely high doses and young rodents not exposed to induced stressors with a putative high level of neurogenesis.
145

Control of expression and oncogenic potential of eEF1A2

Wang, Yan January 2014 (has links)
In mammals, there are two isoforms of eukaryotic translation elongation factor 1A (eEF1A) called eEF1A1 and eEF1A2. They share 98% similarity at the amino acid level, and the main function of both is to facilitate the elongation process in protein translation. However, they have very different expression patterns. While eEF1A1 is universally expressed, eEF1A2 is strictly expressed in muscle, brain and heart. The over-expression of eEF1A2 has been found in cancers, such as ovarian and breast cancer. The factors influencing the different expression patterns of the two isoforms and the mechanisms by which eEF1A2 can act as an oncogene are not clear, therefore, the main aim of this study was to further investigate these two areas. The first aim was to find out whether the resveratrol induced down-regulation of eEF1A2 was mediated by miR-663. Western blotting in MCF7 cells showed that the level of endogenous eEF1A2 was decreased after resveratrol treatment while eEF1A1 remained stable. In contrast, NIH-3T3 stable cell lines which stably express the eEF1A2 coding sequence (CDS) only did not show this down-regulation, suggesting that the untranslated regions (UTRs) might play a role in this regulation. I then showed that miR-663 has ability to down-regulate a reporter linked to the UTRs of eEF1A2. The same reporter gene harbouring UTRs in which the binding sites of miR-663 had been deleted also showed down-regulation after resveratrol treatment, suggesting that the UTRs of EEF1A2 are key to the down-regulation of eEF1A2 by resveratrol but that miR-663 does not mediate this decrease. The second project aimed to address why eEF1A2 is an oncogene but eEF1A1 is not. The 3D structure of human eEF1A1 and eEF1A2 shows that the most of the highly conserved amino acids differences between the two isoforms are Ser and Thr residues, which are potential sites for phosphorylation. I mutated these three sites in eEF1A2 expression constructs to the equivalent amino acid from eEF1A1. Firstly, by transient transfection, all the mutant eEF1A2 were shown expressed and the sub-cellular locations of eEF1A2 remain unchanged after site-directed mutagenesis. Then, stable cell lines were generated. Anchorage independent growth (soft agar) and focus formation assays showed that the stable cell lines harbouring wild type eEF1A2 were significantly more transformed that those expressing the eEF1A2 mutants. However, there was no apparent difference in global protein synthesis between these cell lines. The results suggest that the potential phosphorylated sites in eEF1A2 play an important role in its oncogenicity and that this oncogenicity is not related to the canonical function of eEF1A2.
146

Ação neuroprotetora dos polifenóis resveratrol e daidzeína e a expressão do gangliosídio GM1 em um modelo de cultura organotípica de hipocampo de rato submetido à privação de oxigênio-glicose

Breier, Ana Carolina January 2010 (has links)
Os gangliosídios são glicoesfingolipídios caracterizados pela presença de ácido siálico em sua estrutura química e por suas altas concentrações nas membranas das células do sistema nervoso, além de desempenharem importantes funções celulares, como diferenciação, comunicação, maturação, plasticidade neuronal, entre outras. A isquemia cerebral está entre as principais causas de mortalidade e morbidade em todo o mundo, o que torna essa patologia alvo de muitos estudos para o entendimento dos mecanismos desencadeados que levam à morte neuronal, e ao mesmo tempo, com o objetivo de descobrir novos tratamentos farmacológicos. Neste estudo investigamos a ação neuroprotetora dos polifenóis resveratrol e daidzeína associando-a ao efeito destas substâncias sobre o perfil cromatográfico dos gangliosídios. Para isso, foi utilizado um modelo in vitro de privação de oxigênio-glicose (POG) em culturas organotípicas de hipocampo de rato. Nossos resultados demonstraram que o tratamento com ambos polifenóis diminuiu significativamente a morte celular induzida pela POG. Através da análise do perfil cromatográfico dos gangliosídios, podemos observar uma diminuição de expressão para o gangliosídio GM1 no grupo POG, o que não aconteceu nos grupos POG tratados com os polifenóis. Além disso, os resultados de imuno-histoquímica analisados por microscopia confocal, permitiram visualizar uma maior fluorescência de GM1 localizada na região dos neurônios hipocampais, marcados pela proteína NeuN. Portanto, esses resultados sugerem que a ação neuroprotetora dos polifenóis possa ocorrer através da expressão do gangliosídio GM1 em neurônios hipocampais, prevenindo desta forma, a morte celular. / The gangliosides are glycosphingolipids characterized by the presence of sialic acid in their chemical structure and by their high concentrations in the nervous system cell membranes. Besides this, they have important cellular functions such as differentiation, communication, maturation, neuronal plasticity among others. Cerebral ischemia is one of the main causes of morbidity and mortality worldwide, making this disease the subject of many studies to understand the mechanisms that trigger the neuronal death. At the same time, the discovery of drugs that target these mechamisms could lead to new pharmacological treatments. We investigated the neuroprotective action of the polyphenols resveratrol and daidzein associating it to their effect on the chromatographic profile of gangliosides. For this, we used an in vitro model of oxygen-glucose deprivation (OGD) in organotypic cultures of rat hippocampus. Our results demonstrated that treatment with both polyphenols significantly decreased cell death induced by OGD. Through analysis of the chromatographic gangliosides profile, a decrease of GM1 ganglioside expression in OGD group was observed, which did not happen in the OGD groups treated with polyphenols. Furthermore, immunohistochemistry analysis by confocal microscopy, showed a greater GM1 fluorescence located in the region of hippocampal neurons, marked by NeuN protein. These results suggest that the polyphenols neuroprotective action may occur at the level of GM1 ganglioside expression in hippocampal neurons and may prevent cellular death.
147

Resveratrol modula a secreção da proteína S100B em células astrogliais expostas à amônia

Bobermin, Larissa Daniele January 2011 (has links)
A amônia é uma neurotoxina implicada em desordens metabólicas cerebrais associadas com hiperamonemia. A neurotoxicidade aguda da amônia pode ser mediada por mecanismos excitotóxicos envolvendo o sistema glutamatérgico, incluindo a ativação do receptor NMDA e o subsequente aumento na concentração de Ca2+. O estresse oxidativo está relacionado à neurotoxicidade da amônia e o óxido nítrico parece estar envolvido nesta condição. Os astrócitos desempenham um papel essencial na proteção dos neurônios contra excitotoxicidade por captar o excesso de amônia e glutamato e convertê-los em glutamina, usando a enzima glutamina sintetase, e também protegendo contra o estresse oxidativo. A proteína S100B, particularmente a S100B extracelular, é usada como parâmetro de ativação ou comprometimento em várias situações de dano cerebral, incluindo hiperamonemia. Antioxidantes, como o resveratrol, apresentam muitos efeitos biológicos, incluindo a modulação de parâmetros gliais como a captação de glutamato, a atividade da glutamina sintetase e a secreção de S100B. Neste estudo, foi investigado o efeito de antioxidantes sobre a secreção de S100B induzida pela amônia em células astrogliais. O resveratrol foi capaz de prevenir o aiumento da secreção de S100B, após 24 h de exposição à amônia, provavelmente via inibição de óxido nítrico e proteína cinase A (PKA). Então, o resveratrol pode ser um possível agente protetor contra a neurotoxicidade induzida pela amônia. / Ammonia is a neurotoxin implicated in brain metabolic disorders associated with hyperammonemia. Acute ammonia neurotoxicity can be mediated by excitotoxic mechanism involving glutamatergic system, including NMDA receptor activation and subsequent increase in intracellular Ca2+ concentration. Oxidative stress is related to ammonia neurotoxicity and nitric oxide can be involved in this condition. Astrocytes play an essential role in protecting neurons against excitotoxicity uptake excess ammonia and glutamate and converting it into glutamine, using enzyme glutamine synthetase and also protected against oxidative stress. S100B protein, particularly extracellular S100B, is used as a parameter of glial activation or commitment in several situations of brain injury, including hyperammonemia. Antioxidants, such as resveratrol, showed many biological effects, including modulation of glial parameters as glutamate uptake, glutamine synthetase activity and S100B secretion. In this study, we investigated the effect of antioxidants on S100B secretion induced by ammonia in astroglial cells. Resveratrol was able to prevent the increase of S100B secretion, after 24 h ammonia exposure, probably via nitric oxide and protein kinase A (PKA) inhibition. Then, resveratrol may be a possible protective agent against neurotoxicity induced by ammonia.
148

Development of nanoparticles loaded with bioactive compounds for application as nutraceuticals

Rosa, Natacha Alexandra Branco January 2011 (has links)
Tese de mestrado integrado. Bioengenharia (Engenharia Biomédica). Universidade do Porto. Faculdade de Engenharia. 2011
149

Influence of natural food compounds on DNA stability / Einfluss natürlicher Nahrungsbestandteile auf die DNA Stabilität

Glaser, Nina January 2012 (has links) (PDF)
Cancer is one of the leading causes of death all over the world. Malnutrition and toxic contaminations of food with substances such as mycotoxins have been thought to account for a high percentage of cancers. However, human diet can deliver both mutagens and components that decrease the cancer risk. Genomic damage could be reduced by food components through different mechanisms such as scavenging of reactive oxygen species. In the first part of this study we tried to investigate the effects of patulin and resveratrol on DNA stability in V79 cells. Patulin is a mycotoxin, which is frequently found in spoiled apples and other fruits. The WHO has established a safety level of 50 µg/L, which is indeed not observed by all manufacturers. The acute toxicity of patulin in high concentrations is well known, however its potential carcinogenicity is still a matter of debate. Therefore we wanted to investigate further steps in the mechanism of patulin-induced genotoxicity. Patulin caused the formation of micronuclei and nucleoplasmic bridges in a dose-dependent manner. Further analysis revealed that patulin induced both kinetochore-negative and positive micronuclei. Time course of incubation indicate a new mechanism for patulin-induced nucleoplasmic bridge formation. We hypothized a mechanism via cross-linking of DNA, which was confirmed by a modified version of comet assay. Incubations of cells with patulin led to an increased number of multinucleated cells and multipolar mitoses. Cell cytometry revealed a G2 arrest by patulin, which might explain the amplification of centrosomes and patulin-induced aneuploidy. Patulin cause a dose-dependent DNA damage in comet assay which was influenced by the cellular GSH content. However, an induction of oxidative stress was just seen with higher concentrations of patulin. Levels of cellular glutathione were increased after 24 h incubation indicating an adaptive response to patulin-induced stress. There is growing interest in polyphenols such as resveratrol which have shown many positive effects on human health. The beneficial properties are partially attributed to their ability to scavenge reactive oxygen species. Co-incubation of V79 cells with patulin and 10 µM of the antioxidant resveratrol led to a slight reduction of micronucleus frequency compared to cells which were just treated with patulin. However, in higher concentrations resveratrol themselves caused the formation of micronuclei in V79 cells. Kinetochore analysis indicated only clastogenic properties for resveratrol but no disturbance of mitosis. The antioxidant properties of resveratrol were shown in ferric reducing antioxidant power (FRAP) assay. However, in cellular system resveratrol in higher concentrations revealed also prooxidative properties, as shown in 2,7-dichlordihydrofluorescein (DCF) assay. The increased level of glutathione after resveratrol treatment might reflect an adaptive response to resveratrol-induced oxidative stress. For the second part of this thesis we investigated the effects of an anthocyanin-rich grape extract on hypertensive Ren-2 rats. Ren-2 rats are an accepted genetically modified rat model for the investigation of hypertension and increased oxidative stress. We divided 23 female Ren-2 rats into three groups. One group was fed with an anthocyanin-rich Dacapo grape extract, one group was treated with the angiotensin converting enzyme (ACE) inhibitor ramipril and the third group was kept without medication during the experiment. After one week untreated group showed a clear increase in systolic and diastolic blood pressure compared to the ramipril treated rats. This was in part attenuated in the animals fed with anthocyanin-rich Dacapo grape extract. Effects on blood pressure were also reflected in an increased thirst of untreated and extract fed animals. Comet assay with cells of kidney and liver revealed a slight protective impact of Dacapo extract on DNA damage compared to the other groups. Similar results were obtained after evaluation of ɣ-H2AX-staining of kidney and heart sections. However, in the small intestine oppositional effects were seen, indicating an increased number of double strand breaks probably due to the high local concentration of polyphenols after oral ingestion. Antioxidative properties of the extract were shown in FRAP assay. However, this effect was not reflected in an increased antioxidative capacity in serum or a protective impact in the dihydroethidium (DHE) assay. The extract showed protective effects on DNA damage in comet assay and ɣ-H2AX-staining, but was not able to reduce hypertension back to the control level of ramipril treated animals. High local concentrations could also result in an increased damage of the affected tissue. Therefore, the administration of such concentrated compounds should be handled with care. / Krebs ist eine der häufigsten weltweiten Todesursachen. Fehlernährung und Kontaminationen der Nahrungsmittel mit Toxinen wie Schimmelpilzgift tragen zu einem hohen Prozentsatz zu Krebserkrankungen bei. Allerdings enthält die Nahrung neben Mutagenen auch Bestandteile, die dazu beitragen das Krebsrisiko zu senken. Schäden am Genom können durch Nahrungsbestandteile über verschiedene Mechanismen, wie zum Beispiel das Abfangen von freien Radikalen reduziert werden. Im ersten Teil dieser Studie haben wir versucht die Effekte von Patulin und Resveratrol auf die DNA Stabilität von V79 Zellen zu untersuchen. Patulin ist ein Schimmelpilztoxin, welches häufig in verfaulten Äpfeln und anderen Früchten gefunden wird. Die WHO hat einen Grenzwert von 50 µg/L festgelegt, der jedoch nicht von allen Herstellern eingehalten wird. Die akute Giftwirkung von Patulin in hohen Dosen ist gut bekannt, wohingegen seine potentielle Kanzerogenität immer noch umstritten ist. Daher wollten wir weitere Schritte der Patulin induzierten Genotoxizität aufdecken. Patulin führte zu einer dosisabhängigen Bildung von Mikrokernen und Nucleoplasmic Bridges. Weitere Untersuchungen zeigten, dass Patulin sowohl kinetochor-positive wie auch kinetochor-negative Mikrokerne verursacht. Bei der Analyse des Zeitverlaufs einer Patulininkubation deutete sich ein neuer Mechanismus für die Patulin induzierte Bildung von Nucleoplasmic Bridges an. Wir haben die Hypothese einer Quervernetzung von DNA-Strängen aufgestellt, die durch eine modifizierte Version des Comet Assays bestätigt wurde. Die Inkubation mit Patulin führte zudem zu einer erhöhten Anzahl von vielkernigen Zellen und multipolaren Mitosen. Mittels Durchflusszytometrie konnten wir einen durch Patulin verursachten G2 Arrest nachweisen, der die Amplifikation von Centrosomen und die Patulin induzierte Aneuploidie erklären könnte. Patulin verursachte einen dosisabhängigen Schaden im Comet Assay, der durch den zellulären Glutathiongehalt beeinflusst ist. Eine Auslösung von oxidativem Stress wurde dagegen erst bei höheren Konzentrationen an Patulin beobachtet. Der zelluläre Gluathiongehalt war nach 24 h Inkubationszeit erhöht, was auf eine adaptive Antwort auf den durch Patulin verursachten zellulären Stress hindeutet. Polyphenole wie Resveratrol gewinnen zunehmend an Bedeutung, da zahlreiche positive Effekte auf die menschliche Gesundheit bewiesen wurden. Diese vorteilhaften Eigenschaften werden zum Teil ihrer Eigenschaft als Radikalfänger zugeschrieben. Die Co-Inkubation von V79 Zellen mit Patulin und Resveratrol führte zu einer leichten Reduktion der Mikrokernfrequenz im Vergleich zu Zellen, die nur mit Patulin inkubiert wurden. Allerdings löste Resveratrol in höheren Konzentrationen selbst die Bildung von Mikrokernen aus. Die Kinetochor-Analyse zeigte für Resveratrol clastogene Eigenschaften aber keine störende Effekte auf den Ablauf der Mitose. Die antioxidativen Eigenschaften von Resveratrol wurden im FRAP (ferric reducing antioxidant power) -Assay nachgewiesen. Im Gegensatz dazu wurden im zellulären System mittels DCF (2,7-Dichlordihydro-fluorescein) -Assay in höheren Konzentrationen auch prooxidative Eigenschaften festgestellt. Der erhöhte zelluläre Glutathionspiegel nach Resveratrol-Behandlung könnte dabei auf eine adaptive Anwort auf den durch Resveratrol ausgelösten oxidativen Stress hindeuten Im zweiten Teil dieser Doktorabeit haben wir die Effekte eines anthocyanreichen Traubenextrakts auf hypertensive Ren-2 Ratten untersucht. Ren-2 Ratten sind ein anerkanntes genetisch modifiziertes Rattenmodell zur Untersuchung von Bluthochdruck und erhöhtem oxidativem Stress. Wir haben 23 weibliche Ren-2 Ratten in 3 Gruppen geteilt. Eine Gruppe wurde mit einem anthocyan-reichen Dacapo Traubenextrakt gefüttert, eine Gruppe wurde mit dem ACE (angiotensin converting enzyme) Inhibitor Ramipril behandelt und eine dritte Gruppe wurde während dem Experiment nicht medikamentös behandelt. Nach einer Woche zeigte die nicht therapierte Gruppe einen deutlichen Anstieg des systolischen und diastolischen Blutdrucks. Dieser Anstieg war bei der mit anthocyanreichem Dacapo Traubenextrakt gefütterten Gruppe abgeschwächt. Die Effekte auf den Blutdruck spiegelten sich auch in einer erhöhten Trinkmenge der unbehandelten und mit Extrakt behandelten Tiere wider. Ein Comet Assay mit Nieren- und Leberzellen zeigte einen schwachen schützenden Einfluß des Dacapoextrakts auf den DNA Schaden im Vergleich zu den anderen Behandlungsgruppen. Ähnliche Ergebnisse wurden auch bei der Auswertung der ɣ-H2AX Färbung in Nieren- und Herzschnitten erzielt. Im Dünndarm wurden dagegen gegensätzliche Effekte beobachtet, die auf eine erhöhte Doppelstrangfrequenz durch die hohe lokale Konzentration an Polyphenolen nach oraler Aufnahme hindeuten. Die antioxidative Eigenschaften des Extrakts wurden im FRAP_Assay nachgewiesen. Diese Effekte spiegelten sich jedoch nicht in einer erhöhten antioxidativen Kapazität des Serums oder einem schützenden Effekt im DHE-Assay wider. Der Extrakt zeigte schützende Eigenschaften im Comet Assay und in der ɣ-H2AX-Färbung, war aber nicht in der Lage den Bluthochdruck auf das Kontrollniveau der Ramipril-behandelten Tiere herabzusenken. Hohe lokale Konzentrationen können auch zu einem erhöhten Schaden des betroffenen Gewebes führen. Daher sollte die Anwendung solcher hochkonzentrierter Präparate mit Vorsicht bedacht werden.
150

The Antioxidant and DNA Repair Capacities of Resveratrol, Piceatannol, and Pterostilbene

Livingston, Justin Ryan 01 June 2015 (has links)
Lifestyle diseases represent a large burden on developed societies and account for much morbidity worldwide. Research has shown that eating a diet rich in fruit and vegetables helps to ameliorate and prevent some of these diseases. Antioxidants found in fruits and vegetables may provide a substantial benefit in reducing disease incidence. This thesis examines the antioxidant properties of resveratrol, piceatannol, and pterostilbene, and the ability of Burkitt's Lymphoma (Raji) cells to uptake these three antioxidants. It also studies the effect of the antioxidants in protecting against DNA damage and their role in DNA repair following oxygen radical exposure in Raji cells. The Oxygen Radical Absorbance Capacity (ORAC) assay was used to measure overall antioxidant contribution as well as the ability of Raji cells to uptake antioxidant following exposure to 2,2’-Azobis(2-methyl-propionamide) dihydrochloride (AAPH). The single cell gel electrophoresis (Comet) assay was used to assess DNA damage and DNA repair rates of cells. Results showed that Raji cells, following oxygen radical exposure, significantly uptake pterostilbene (p < 0.0001), but not piceatannol or resveratrol. Piceatannol provided protection against hydrogen peroxide induced DNA damage, but pterostilbene and resveratrol increased DNA damage following hydrogen peroxide treatment. None of the compounds showed any effect on DNA repair. Overall, this study indicates there is merit for further research into the bioactive roles, including antioxidant capacity, of all three compounds. Such research may provide evidence for the more widespread use of these and other food based compounds for preventing lifestyle diseases.

Page generated in 0.0489 seconds