• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 39
  • 23
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 218
  • 37
  • 35
  • 35
  • 35
  • 35
  • 35
  • 31
  • 28
  • 27
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The role of retinoic acid receptor gamma in retinoid-induced limb dysmorphogenesis /

Galdones, Eugene. January 2009 (has links)
No description available.
142

Cross-talk of retinoic acid and adrenergic hormone signaling may influence development of cardiac conduction and rhythmicity in utero

Alam, Sabikha 01 May 2011 (has links)
Stress hormones, adrenaline and noradrenaline, have been shown to be critical for heart development. Mice lacking dopamine greek lower case letter beta]-hydroxylase (Dbh), an enzyme responsible for synthesis of these adrenergic hormones, die during mid-gestation due to cardiac failure. Prior research showed that adrenergic cells are found within the electrical conduction system of the heart, and adrenergic deficiency leads to slowed cardiac conduction during embryogenesis. Microarray analysis of wild-type (Dbh+/+) and knockout (Dbh-/-) mouse hearts revealed significant differences in expression of retinoic acid (RA) signaling genes. RA signaling has also been shown to be critical for heart development. These data suggest that heart failure due to adrenergic deficiency may be dependent upon RA signaling. This led to the hypothesis that adrenergic hormones promote the development of the electrical conduction system through modulation of RA signaling. To test this, embryonic mouse hearts were cultured with LE 135, a RA receptor blocker. Heart rate, arrhythmic index (AI) and conduction time were measured. Under these conditions there was a marked increase in arrhythmias. Hearts treated with LE 135 showed a mean AI of 0.232±0.057 after 24 hours of treatment while when untreated had an AI of 0.083±0.028 (p<0.05;n=15). In contrast, there was no significant change in heart rate or conduction speed after 24 hours with or without the retinoic acid receptor blocker. To determine if adrenergic stimulus influences retinoic acid response, an established RA-sensitive reporter cell line was employed. These F9-RARE-LacZ cells were treated with forskolin (cAMP regulator) and isoproterenol (greek lower case letter beta]-agonist) to measure changes in RA signaling. Evaluation of RA signaling showed an increase in retinoic acid responsiveness when treated with an adrenergic signaling agonist.; These results suggest that proper retinoic acid signaling is essential for maintaining cardiac rhythmicity during embryonic development and adrenergic stimulation can influence this response.
143

Effect of human papillomavirus 16 immortalization on retinoic acid regulation of epidermal growth factor responsiveness and differentiation of normal ectocervical epithelial cells

Sizemore, Nywana January 1995 (has links)
No description available.
144

Design and Development of Potential Therapeutic Agents for Use in Hormone Responsive Cancers

Jetson, Rachael Rene January 2013 (has links)
No description available.
145

The Role of Regulatory Genes in Mediating Growth Arrest by all-trans Retinoic Acid in Ovarian Carcinoma Cell Lines

Sirisani, Evelyn January 2012 (has links)
All-trans retinoic acid (atRA) mediated growth inhibition results in the arrest of the cell cycle during the G1 phase in CAOV3 cells but not SKOV3 ovarian carcinoma cells. The G1 checkpoint is regulated by a multitude of molecules such as the retinoblastoma family of proteins, cyclins, cyclin dependent kinases (CDKs) and cyclin dependent kinase inhibitors (CDKis). CAOV3 cells, which are atRA sensitive, have been shown to express p16INK4a (p16), a cyclin dependent kinase inhibitor regulating the G1 checkpoint. However, atRA resistant SKOV3 cells do not express p16. In these studies, we investigated the role of p16 in mediating atRA induced growth arrest. Our results show that overexpression of p16 in SKOV3 cells leads to growth inhibition following atRA treatment. However, the inhibition is short-term due to the loss of p16 expression. Nevertheless, these results show that p16 plays a role in atRA mediated growth inhibition in ovarian carcinoma cells and that modulation of p16 expression can determine the growth response to atRA. Additionally, we also examined the effect of atRA treatment on the expression of homeobox genes in the CAOV3 cells and SKOV3 cells model system. Homeobox genes comprise a family of transcription factors which function during embryonic development to control pattern formation, differentiation and proliferation. Besides their dominant role during embryogenesis, they are also expressed in adults. In human tumors, an association between the deregulation of the expression of homeobox genes and oncogenic transformation has been reported. It is known that some homeobox genes are atRA targets due to the presence of retinoic acid response element (RARE) either in their promoter region or in their 3' region. In these studies we examined the expression of 13 homeobox genes in CAOV3 cells and SKOV3 cells following ethanol or atRA treatment. The 13 homeobox genes were analyzed because previous studies done by our laboratory observed differences in expression of these homeobox genes when comparing atRA sensitive oral squamous carcinoma cells (SCC) to atRA resistant oral squamous cell carcinoma cells. Of the 13 homeobox genes analyzed in the ovarian carcinoma cell model system, we found HOXA1 and HOXB4 to be upregulated by atRA in CAOV3 cells but not in SKOV3 cells. We also found that the induction of HOXA1 and HOXB4 mRNA expression in CAOV3 cells occurred as a respond to atRA treatment and is not due to a generalized response because of overall growth reduction. Interestingly, HOXA1 has two alternatively spliced forms. The mRNA expression of the truncated form of HOXA1 is highly induced by atRA when compared to its full length form. HOXB1, which is HOXA1 target gene, was not upregulated following atRA treatment. These results suggest that: 1) expression of p16 plays a role in mediating atRA growth inhibition; 2) HOXA1 and HOXB4 also play a role in mediating growth suppression by atRA; and 3) the truncated form of HOXA1 is induced by atRA treatment and may play a role in mediating growth inhibition by atRA, perhaps by acting in a dominant negative fashion. / Microbiology and Immunology
146

Establishment of a Long Term Cell Culture Model for Testing Anti-Infectives against Mycobacterium avium subsp. paratuberculosis

Kimsawatde, Gade Carolyn 05 May 2015 (has links)
Mycobacterium avium subsp. paratuberculosis (MAP) is a very slow growing bacterium that is the causative agent of Johne's disease (JD) in ruminants and has long been suggested to be associated with complications of Crohn's disease (CD) in humans. Although there is no direct evidence that MAP is the primary etiological agent for CD, most CD patients are found to have MAP in their intestinal tissues. The current control measures for JD in cattle, sheep, and goats have only been minimally effective, and there are only medications to treat the symptoms of mycobacterial infections associated with CD in humans. Along with not being able to cure MAP infections, there is no established laboratory animal model for testing therapeutics. When mice are infected with MAP they develop systemic infection and do not mimic disease observed in ruminants. J774A.1 murine macrophages typically have a very short lifespan of about 4-6 days, however MAP infected cell cultures can survive up to about 10 days. Using a modified protocol of Estrella et al. (2011), we have been able to establish a 45-60 day long-term MAP infected J774A.1 murine macrophage cell culture model. With the addition of retinoic acid (RA), vitamin D (VD), and phorbol myristate acetate (PMA) in combination in cell culture, we were able to screen novel therapeutics before embarking on in vivo testing in animals. This is a significant step forward in Crohn's and Johne's disease treatment research. We are not only able to test various drugs against specific strains of MAP to determine susceptibility, but we are also able to test a wide variety of drugs at the same time, with relatively minimal cost. We have evaluated the efficacy of clarithromycin, azithromycin, isoniazid, amikacin, ethambutol, ciprofloxacin, levofloxacin, rifampicin, clofazimine, as well as a combination of clarithromycin, rifampicin, and clofazimine using our MAP infected macrophage cell culture model. We were able to determine the drugs' differential ability to kill intracellular MAP in the early stages of infection, versus chronic stages of infection, and against two different strains of MAP, 43015 and 19698 that affect humans and cattle respectively. The minimal inhibitory concentration (MIC) of each drug was determined as per NCCLS protocol in vitro, and the drugs were tested at the MIC value, along with one concentration above and below the MIC in our cell culture model. The antimicrobials were found to be effective at different stages of cell culture infection and in different strains of MAP. Some drugs were more effective at early stages of MAP infection, whereas others were more effective in chronic or latent stages of infections. It is important to note that although a drug may be effective at a certain stage of infection, it may not necessarily be effective against all strains of MAP. The most promising results were seen with a combination of clarithromycin, clofazimine, and rifampicin, which was effective at all stages of infection with both strains of MAP tested. This long term cell culture model will provide researchers with important screening tools for evaluating new therapeutics before embarking on costly in vivo testing, and allow the assessment of therapeutics at different stages of MAP infection but also against an array of intracellular pathogens. / Ph. D.
147

Pleiotropic Effects of Proopiomelanocortin and VGF Nerve Growth Factor Inducible Neuropeptides for the Long-Term Regulation of Energy Balance

Helfer, Gisela, Stevenson, T.J. 2020 May 1927 (has links)
Yes / Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance. / Academy of Medical Sciences, Leverhulme Trust
148

Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart / レチノイン酸受容体アゴニストであるAM80は心筋細胞の細胞周期を活性化し心臓への生着を増強する

Kasamoto, Manabu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25174号 / 医博第5060号 / 京都大学大学院医学研究科医学専攻 / (主査)教授 江藤 浩之, 教授 湊谷 謙司, 教授 松田 道行 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
149

Whole Exome Sequencing Reveals Homozygous Mutations in RAI1, OTOF, and SLC26A4 Genes Associated with Nonsyndromic Hearing Loss in Altaian Families (South Siberia)

Сhurbanov, Alexander Y., Karafet, Tatiana M., Morozov, Igor V., Mikhalskaia, Valeriia Yu., Zytsar, Marina V., Bondar, Alexander A., Posukh, Olga L. 15 April 2016 (has links)
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.
150

Effets d'agents morphogénétiques sur la prolifération et la différenciation neuronales et épithéliales chez la pensée de mer Renilla koellikeri

Estephane, Djoyce 02 1900 (has links)
La présence d’un récepteur de type RXR a récemment été rapporté chez la pensée de mer, Renilla koellikeri, de même que chez d’autres anthozoaires, et le NO semble jouer des différents rôles physiologiques, chez plusieurs cnidaires. L’acide rétinoïque (AR) et le monoxyde d’azote (NO) sont connus pour leur implication dans l’induction de la croissance des neurites chez les vertébrés ainsi que chez les invertébrés. Mais jusqu’à présent, aucun rôle de ces agents n’a encore été identifié chez ce phylum ancien des invertébrés. Dans le but de montrer que ces agents morphogénétiques ont un rôle dans le développement neuronal chez ces ancêtres des métazoaires bilatéraux, nous avons utilisé des cultures primaires de cellules du cnidaire anthozoaire Renilla koellikeri (pensée de mer), doté d’un système nerveux des plus primitif. Nous avons trouvé que les deux types d’acide rétinoïque, 9-cis et 11-trans, induisent une prolifération cellulaire dose-dépendante en fonction du temps dans les boîtes de pétri enduites de polylysine. Les cultures cellulaires exposées à l’acide rétinoïque dans les boîtes sans polylysine montrent une différenciation en des cellules épithéliales. D’autre part, le NO induit exclusivement une différenciation neuronale dans les boîtes enduites de polylysine. Aucun autre type de cellules subit un différenciation en présence de NO et la densité des cellules dédifférenciées a diminué. Les prolongements des neurones différenciés semblent s’enchevêtrer et former un réseau neuronal assez dense. L’ensemble de ces observations suggère que l’acide rétinoïque, contrairement à NO, est associé à l’activité mitotique, et que l’acide rétinoïque et le NO sont impliqués différemment dans la spécification cellulaire, respectivement épithéliale et neuronale, chez la pensée de mer. Le type d’action déclenchée, qu’il soit la mitogénèse ou la différenciation (épithéliale ou neuronale), varie alors selon l’état d’adhésion des cellules au substrat. Comme les données moléculaires et paléontologiques rapprochent les cnidaires, telle la pensée de mer, des ancêtres des eumétazoaires, nos résultats suggèrent que le rôle morphogénétique de l’acide rétinoïque et du NO est enraciné dans l’ancêtre commun de tous les métazoaires. / Retinoic acid receptors were recently reported in the sea pansy, Renilla koellikeri, and in other anthozoans, and NO seems to play various roles in several cnidarians. Retinoic acid (RA) and nitric oxide (NO) are known for their implication in inducing neurite outgrowth in both vertebrates and invertebrates. But so far, no role of these agents has been identified in this basal metazoan phylum. In order to show that these agents have a morphogenetic role in neuronal development in the ancestors of bilateral metazoan. We used primary cultures of cells from the cnidarian anthozoan Renilla koellikeri (sea pansy), with the most primary nervous system. We found that both 9-cis and 11-trans retinoic acid induced cell proliferation in dose- and time-dependant manners in petri dishes coated with polylysine. Cell cultures exposed to retinoic acid in dishes devoid of polylysine were observed to differentiate into epithelial cells. On the other hand, NO induced extensive neurite outgrowth in polylysine-coated culture dishes. No other celle type underwent differentiation in the presence of NO, and the density of dedifferentiated cells was reduced. The neurites of the differentiating neurons appeared to intertwine and form a loose nerve net. These observations suggest that retinoic acid, but not NO, has mitogenic activity, and that retinoic acid and NO are differentially involved in nerve cell specification in the sea pansy. The type of action, mitogenesis or cell differenciation (epithelial or neural), depends on the degree of cell adhesion to substrate. As both molecular and paleontological evidence place cnidarians such as the sea pansy closest to the eumetazoan ancestor, our results suggest that the morphogenetic role of retinoic acid and NO was rooted in the commun ancestor of all metazoans.

Page generated in 0.0657 seconds